-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmain_RNN.py
88 lines (70 loc) · 2.49 KB
/
main_RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
from keras.models import Sequential
from keras.layers import Dense,LSTM,GRU,Dropout, Flatten
#################################### Import Data ##########################################
def import_data(file):
file_dir = os.path.dirname(__file__)
file_path= os.path.join(file_dir,'Compressed_data/'+file) ### Make sure the dataset is in the correct folder
train_data= np.loadtxt(file_path, dtype= float , delimiter= ',', skiprows= 1)
return train_data
def normalize(data_vector):
max_data = np.amax(data_vector)
min_data = np.amin(data_vector)
data_vector = -1 + 2*(data_vector -min_data)/(max_data - min_data)
return data_vector
#### Tracking the execution time
start_time = time.time()
#### Importing data
print('Loading data ...')
data = import_data('adata.csv')
m = len(data)
crossval = round(3*m/4)
train_data = data[0:crossval,:]
test_data = data[crossval:,:]
#### Setting up the number of parameters
parameters = len(train_data[0,:]) - 2
#### Normalizing the data
for x in range(1,parameters+1):
train_data[:,x] = normalize(train_data[:,x])
test_data[:,x] = normalize(test_data[:,x])
X_train = train_data[:,1:parameters+1]
X_train = np.reshape(X_train, (X_train.shape[0],1,X_train.shape[1]))
X_train = np.array(X_train)
y_train = train_data[:,parameters+1]
y_train = pd.get_dummies(y_train)
y_train = np.array(y_train)
X_test = test_data[:,1:parameters+1]
X_test = np.reshape(X_test, (X_test.shape[0],1,X_test.shape[1]))
X_test = np.array(X_test)
y_test = test_data[:,parameters+1]
y_test = pd.get_dummies(y_test)
y_test = np.array(y_test)
np.random.seed(7)
AccuracyArr = np.empty(0)
sArr = np.empty(0)
for s in 6,12,18:
model = Sequential()
model.add(LSTM(s, input_shape=(None, parameters), return_sequences= False))
#model.add(Dropout(0.9))
#model.add(LSTM(18, return_sequences=True))
#model.add(Dropout(0.2))
#model.add(LSTM(12))
model.add(Dense(6, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(X_train, y_train, epochs=2, batch_size=40)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
AccuracyArr = np.append(AccuracyArr,(scores[1]*100))
sArr = np.append(sArr,s)
print("Accuracy: %.2f%%" % (scores[1]*100))
fig = plt.figure()
plt.plot(sArr,AccuracyArr)
plt.xlabel('#LSTM neurons')
plt.ylabel('Accuracy of model (in %)')
plt.show()
fig.savefig('Accelerometer.png')