-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtrainingPreprocessedData.py
50 lines (37 loc) · 1.52 KB
/
trainingPreprocessedData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import numpy as np
import pandas as pd
from numpy import genfromtxt
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report,f1_score
from sklearn.model_selection import train_test_split
from sklearn import svm
import matplotlib.pyplot as plt
X_train = genfromtxt("X_train.txt", delimiter =' ')
X_test = genfromtxt("X_test.txt", delimiter =' ')
y_test = genfromtxt("y_test.txt", delimiter ='\n')
y_train = genfromtxt("y_train.txt", delimiter ='\n')
y_train = np.array(y_train)
y_test = np.array(y_test)
print(X_train.shape)
print(y_train.shape)
def NeuralNetworkTrain(X_train,y_train,X_test,y_test):
train_scores = np.empty(0)
test_scores = np.empty(0)
indices = np.empty(0)
for i in 1,15:
print("hidden layer: ",i,"\n")
mlp = MLPClassifier(hidden_layer_sizes=(i, i, i))
mlp.fit(X_train,y_train)
predictions_train = mlp.predict(X_train)
print("Fitting of train data for size ",i," : \n",classification_report(y_train,predictions_train))
predictions_test = mlp.predict(X_test)
print("Fitting of test data for size ",i," : \n",classification_report(y_test,predictions_test))
train_scores = np.append(train_scores, f1_score(y_train,predictions_train,average='macro'))
test_scores = np.append(test_scores, f1_score(y_test,predictions_test,average='macro'))
indices = np.append(indices,i)
plt.plot(indices, train_scores)
plt.plot(indices,test_scores)
plt.legend(['Train scores','Test scores'],loc='upper left')
plt.show()
NeuralNetworkTrain(X_train,y_train,X_test,y_test)