-
Notifications
You must be signed in to change notification settings - Fork 0
/
01-matrix.cpp
120 lines (110 loc) · 4.1 KB
/
01-matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// Time: O(m * n)
// Space: O(1)
// dp solution
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
for (int i = 0; i < matrix.size(); ++i) {
for (int j = 0; j < matrix[i].size(); ++j) {
if (!matrix[i][j]) {
continue;
}
matrix[i][j] = numeric_limits<int>::max();
if (i > 0 && matrix[i - 1][j] != numeric_limits<int>::max()) {
matrix[i][j] = min(matrix[i][j], matrix[i - 1][j] + 1);
}
if (j > 0 && matrix[i][j - 1] != numeric_limits<int>::max()) {
matrix[i][j] = min(matrix[i][j], matrix[i][j - 1] + 1);
}
}
}
for (int i = matrix.size() - 1; i >= 0; --i) {
for (int j = matrix[i].size() - 1; j >= 0; --j) {
if (!matrix[i][j]) {
continue;
}
if (i < matrix.size() - 1 && matrix[i + 1][j] != numeric_limits<int>::max()) {
matrix[i][j] = min(matrix[i][j], matrix[i + 1][j] + 1);
}
if (j < matrix[i].size() - 1 && matrix[i][j + 1] != numeric_limits<int>::max()) {
matrix[i][j] = min(matrix[i][j], matrix[i][j + 1] + 1);
}
}
}
return matrix;
}
};
// Time: O(m * n)
// Space: O(m * n)
// dp solution
class Solution2 {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
vector<vector<int> > dp(matrix.size(),
vector<int>(matrix[0].size(),
numeric_limits<int>::max()));
for (int i = 0; i < matrix.size(); ++i) {
for (int j = 0; j < matrix[i].size(); ++j) {
if (matrix[i][j] == 0) {
dp[i][j] = 0;
} else {
if (i > 0 && dp[i - 1][j] != numeric_limits<int>::max()) {
dp[i][j] = min(dp[i][j], dp[i - 1][j] + 1);
}
if (j > 0 && dp[i][j - 1] != numeric_limits<int>::max()) {
dp[i][j] = min(dp[i][j], dp[i][j - 1] + 1);
}
}
}
}
for (int i = matrix.size() - 1; i >= 0; --i) {
for (int j = matrix[i].size() - 1; j >= 0; --j) {
if (matrix[i][j] == 0) {
dp[i][j] = 0;
} else {
if (i < matrix.size() - 1 && dp[i + 1][j] != numeric_limits<int>::max()) {
dp[i][j] = min(dp[i][j], dp[i + 1][j] + 1);
}
if (j < matrix[i].size() - 1 && dp[i][j + 1] != numeric_limits<int>::max()) {
dp[i][j] = min(dp[i][j], dp[i][j + 1] + 1);
}
}
}
}
return dp;
}
};
// Time: O(m * n)
// Space: O(m * n)
class Solution3 {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
queue<pair<int, int>> queue;
for (int i = 0; i < matrix.size(); ++i) {
for (int j = 0; j < matrix[0].size(); ++j) {
if (matrix[i][j] == 0) {
queue.emplace(i, j);
}
else {
matrix[i][j] = numeric_limits<int>::max();
}
}
}
const vector<pair<int, int>> dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
while (!queue.empty()) {
auto cell = queue.front();
queue.pop();
for (const auto& dir : dirs) {
auto i = cell.first + dir.first;
auto j = cell.second + dir.second;
if (!(0 <= i && i < matrix.size() && 0 <= j && j < matrix[0].size() &&
matrix[i][j] > matrix[cell.first][cell.second] + 1)) {
continue;
}
queue.emplace(i, j);
matrix[i][j] = matrix[cell.first][cell.second] + 1;
}
}
return matrix;
}
};