-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
470 lines (392 loc) · 22.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import torch
import time
import argparse
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.nn
from IPython import embed
from datasets.sequence_folders import SequenceFolder, ValidationSetWithPose
import custom_transforms as cust_trans
import models
import csv
import numpy as np
from inverse_warp import pose_vec2mat
from utils import save_checkpoint, save_path_formatter, log_output_tensorboard, tensor2array
from loss_functions import compute_depth_errors, smooth_loss, explainability_loss, photometric_reconstruction_loss, compute_pose_error
from logger import AverageMeter
from tensorboardX import SummaryWriter
from IPython import embed
parser = argparse.ArgumentParser(description='Structure from Motion Learner training on KITTI and CityScapes Dataset',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
# parser.add_argument('--dataset-format', default='sequential', metavar='STR',
# help='dataset format, stacked: stacked frames (from original TensorFlow code) '
# 'sequential: sequential folders (easier to convert to with a non KITTI/Cityscape dataset')
parser.add_argument('--sequence-length', type=int, metavar='N', help='sequence length for training', default=3)
parser.add_argument('--rotation-mode', type=str, choices=['euler', 'quat'], default='euler',
help='rotation mode for PoseExpnet : euler (yaw,pitch,roll) or quaternion (last 3 coefficients)')
parser.add_argument('--padding-mode', type=str, choices=['zeros', 'border'], default='zeros',
help='padding mode for image warping : this is important for photometric differenciation when going outside target image.'
' zeros will null gradients outside target image.'
' border will only null gradients of the coordinate outside (x or y)')
parser.add_argument('--with-gt', action='store_true', help='use depth ground truth for validation. '
'You need to store it in npy 2D arrays see data/kitti_raw_loader.py for an example')
parser.add_argument('--with-pose', action='store_true', help='use pose ground truth for validation. '
'You need to store it in text files of 12 columns see data/kitti_raw_loader.py for an example '
'Note that for kitti, it is recommend to use odometry train set to test pose')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=200, type=int, metavar='N', #
help='number of total epochs to run')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if not set)')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=2e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', #
help='evaluate model on validation set')
# parser.add_argument('--pretrained-disp', dest='pretrained_disp', default=None, metavar='PATH',
# help='path to pre-trained dispnet model')
# parser.add_argument('--pretrained-exppose', dest='pretrained_exp_pose', default=None, metavar='PATH',
# help='path to pre-trained Exp Pose net model')
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization') #
parser.add_argument('--log-summary', default='progress_log_summary.csv', metavar='PATH',
help='csv where to save per-epoch train and valid stats')
parser.add_argument('--log-full', default='progress_log_full.csv', metavar='PATH',
help='csv where to save per-gradient descent train stats')
parser.add_argument('-p', '--photo-loss-weight', type=float, help='weight for photometric loss', metavar='W', default=1)
parser.add_argument('-m', '--mask-loss-weight', type=float, help='weight for explainabilty mask loss', metavar='W', default=0)
parser.add_argument('-s', '--smooth-loss-weight', type=float, help='weight for disparity smoothness loss', metavar='W', default=0.1)
# parser.add_argument('--log-output', action='store_true', help='will log dispnet outputs and warped imgs at validation step')
parser.add_argument('-f', '--training-output-freq', type=int,
help='frequence for outputting dispnet outputs and warped imgs at training for all scales. '
'if 0, will not output',
metavar='N', default=0)
parser.add_argument('-eps', '--uncert-loss-epsilon', type=float, help='epsilon for softplus function', metavar='EP', default=0.001)
parser.add_argument('--uncert', action='store_true', help='use uncertainity based loss function for photometric loss')
if torch.cuda.is_available(): device = torch.device("cuda")
else: device = torch.device("cpu")
best_error = -1
n_iter = 0
def main():
## SETUP
global device, best_error, n_iter
args = parser.parse_args()
torch.manual_seed(args.seed)
# if args.evaluate:
# args.epochs = 0
## Save_Path for checkpoints
save_path = save_path_formatter(args, parser)
args.save_path = 'checkpoints'/save_path
print('Checkpoints will be saved to save_path: {}'.format(args.save_path))
args.save_path.makedirs_p()
## TensorBoard Writer
tb_writer = SummaryWriter(args.save_path)
# Custom transforms for train and validation sets
normalize = cust_trans.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
train_transform = cust_trans.Compose([
cust_trans.RandomHorizontalFlip(),
cust_trans.RandomScaleCrop(),
cust_trans.ArrayToTensor(),
normalize
])
valid_transform = cust_trans.Compose([
cust_trans.ArrayToTensor(),
normalize
])
# Get sequences from train list
train_set = SequenceFolder(
args.data,
transform=train_transform,
seed=args.seed,
train=True,
sequence_length=args.sequence_length
)
# Get sequences from validation list
if args.with_pose and args.with_gt:
val_set = val_set = ValidationSetWithPose(
args.data,
sequence_length=args.sequence_length,
transform=valid_transform
)
else:
val_set = SequenceFolder(
args.data,
transform=valid_transform,
seed=args.seed,
train=False,
sequence_length=args.sequence_length,
)
print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes)))
# Data Loaders
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# Create Models - DispNetS and PoseExpNet
disp_net = models.DispNetS().to(device)
# pose_exp_net = models.PoseExpNet(nb_ref_imgs=args.sequence_length - 1, output_exp = False).to(device)
pose_exp_net = models.PoseExpNet(nb_ref_imgs=args.sequence_length - 1, output_exp = args.mask_loss_weight > 0).to(device)
# Weights Initialization
disp_net.init_weights() # Code to use pretrained weights also exists
pose_exp_net.init_weights()
cudnn.benchmark = True
disp_net = torch.nn.DataParallel(disp_net)
pose_exp_net = torch.nn.DataParallel(pose_exp_net)
print("Number of GPUs Available: ", torch.cuda.device_count())
# torch.distributed.init_process_group(backend='nccl', world_size=torch.cuda.device_count(), init_method='...')
# disp_net = torch.nn.parallel.DistributedDataParallel(disp_net)
# pose_exp_net = torch.nn.parallel.DistributedDataParallel(pose_exp_net)
optim_params = [
{'params': disp_net.parameters(), 'lr': args.lr},
{'params': pose_exp_net.parameters(), 'lr': args.lr}
]
optimizer = torch.optim.Adam(
optim_params,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay
)
with open(args.save_path/args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'photo_loss', 'explainability_loss', 'smooth_loss'])
if args.evaluate:
if args.with_gt and args.with_pose:
errors, error_names = validate_with_gt_pose(args, val_loader, disp_net, pose_exp_net, 0, tb_writer)
else:
errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_exp_net, 0, tb_writer)
for error, name in zip(errors, error_names):
tb_writer.add_scalar(name, error, 0)
for epoch in range(args.epochs):
print("Epoch :", epoch)
train_loss = train(args, train_loader, disp_net, pose_exp_net, optimizer, args.epoch_size, epoch, tb_writer)
if args.with_gt and args.with_pose:
# Validating using pose GT and generated depth from velodyne points
errors, error_names = validate_with_gt_pose(args, val_loader, disp_net, pose_exp_net, epoch, tb_writer)
else:
errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_exp_net, epoch, tb_writer)
for error, name in zip(errors, error_names):
tb_writer.add_scalar(name, error, epoch)
decisive_error = errors[1] # Choose which error measures model performance
if best_error < 0:
best_error = decisive_error
is_best = decisive_error < best_error
best_error = min(best_error, decisive_error)
save_checkpoint(
args.save_path,
{
'epoch': epoch + 1,
'state_dict': disp_net.module.state_dict()
},
{
'epoch': epoch + 1,
'state_dict': pose_exp_net.module.state_dict()
},
is_best
)
def train(args, train_loader, disp_net, pose_exp_net, optimizer, epoch_size, epoch, tb_writer):
global device, n_iter
losses = AverageMeter(precision=4)
w1, w2, w3 = args.photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight
# Train mode
disp_net.train()
pose_exp_net.train()
end = time.time()
## FOR LOOP HERE over train_loader
for i, (tgt_img, ref_imgs, intrinsics, _) in enumerate(train_loader):
log_losses = i > 0 and n_iter % args.print_freq == 0
log_output = args.training_output_freq > 0 and n_iter % args.training_output_freq == 0
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
intrinsics = intrinsics.to(device)
# print("tgt_img: ", tgt_img.size())
# Forward pass
disparities, uncertainities = disp_net(tgt_img)
# disparities = outputs[:, :1, :, :]
# uncertainities = outputs[:, 1:, :, :]
depth = [1/disp for disp in disparities]
explainability_mask, pose = pose_exp_net(tgt_img, ref_imgs)
# embed()
# assert((w2> 0.0) == args.uncert, "Choose between Uncertainity and Explainability")
# COMPUTE LOSSES
loss_1, warped, diff = photometric_reconstruction_loss(tgt_img, ref_imgs, intrinsics,
depth, explainability_mask, pose, uncertainities, args.uncert_loss_epsilon, args.uncert,
args.rotation_mode, args.padding_mode)
if w2 > 0:
loss_2 = explainability_loss(explainability_mask)
else:
loss_2 = 0
loss_3 = smooth_loss(depth)
loss = w1*loss_1 + w2*loss_2 + w3*loss_3
if log_losses:
tb_writer.add_scalar('photometric_error', loss_1.item(), n_iter)
if w2 > 0:
tb_writer.add_scalar('explanability_loss', loss_2.item(), n_iter)
tb_writer.add_scalar('disparity_smoothness_loss', loss_3.item(), n_iter)
tb_writer.add_scalar('total_loss', loss.item(), n_iter)
if log_output:
tb_writer.add_image('train Input', tensor2array(tgt_img[0]), n_iter)
for k, scaled_maps in enumerate(zip(depth, disparities, warped, diff, explainability_mask)):
log_output_tensorboard(tb_writer, "train", 0, " {}".format(k), n_iter, *scaled_maps)
losses.update(loss.item(), args.batch_size)
# Gradient compute and Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time = time.time() - end
end = time.time()
print("Training Epoch: {} Time: {}, Loss: {}".format(epoch, batch_time, loss.item()))
with open(args.save_path/args.log_full, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.item(), loss_1.item(), loss_2.item() if w2 > 0 else 0, loss_3.item()])
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg[0]
@torch.no_grad() # Avoids gradient updation (backward pass is skipped during evaluation)
def validate_without_gt(args, val_loader, disp_net, pose_exp_net, epoch, tb_writer, sample_nb_to_log=3):
global device
print("Validating without GT")
batch_time = AverageMeter()
losses = AverageMeter(i=4, precision=4)
log_outputs = sample_nb_to_log > 0
# Output the logs throughout the whole dataset
batches_to_log = list(np.linspace(0, len(val_loader), sample_nb_to_log).astype(int))
w1, w2, w3 = args.photo_loss_weight, args.mask_loss_weight, args.smooth_loss_weight
poses = np.zeros(((len(val_loader)-1) * args.batch_size * (args.sequence_length-1), 6))
disp_values = np.zeros(((len(val_loader)-1) * args.batch_size * 3))
# Evaluate mode
disp_net.eval()
pose_exp_net.eval()
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(val_loader):
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
intrinsics = intrinsics.to(device)
intrinsics_inv = intrinsics_inv.to(device)
# embed()
disp, uncert = disp_net(tgt_img)
# disp = disp_uncert[:, :1, :, :]
# uncert = disp_uncert[:, 1:, :, :]
depth = 1/disp
explainability_mask, pose = pose_exp_net(tgt_img, ref_imgs)
loss1, warped, diff = photometric_reconstruction_loss(tgt_img, ref_imgs,
intrinsics, depth,
explainability_mask, pose, uncert, args.uncert_loss_epsilon, args.uncert,
args.rotation_mode, args.padding_mode)
if w2 > 0:
loss2 = explainability_loss(explainability_mask).item()
else:
loss2 = 0
loss3 = smooth_loss(depth).item()
if log_outputs and i in batches_to_log: # log first output of wanted batches
index = batches_to_log.index(i)
if epoch == 0:
for j, ref in enumerate(ref_imgs):
tb_writer.add_image('val Input {}/{}'.format(j, index), tensor2array(tgt_img[0]), 0)
tb_writer.add_image('val Input {}/{}'.format(j, index), tensor2array(ref[0]), 1)
log_output_tensorboard(tb_writer, 'val', index, '', epoch, 1./disp, disp, warped[0], diff[0], explainability_mask)
if log_outputs and i < len(val_loader)-1:
step = args.batch_size*(args.sequence_length-1)
poses[i * step:(i+1) * step] = pose.cpu().view(-1, 6).numpy()
step = args.batch_size * 3
disp_unraveled = disp.cpu().view(args.batch_size, -1)
disp_values[i * step:(i+1) * step] = torch.cat([disp_unraveled.min(-1)[0],
disp_unraveled.median(-1)[0],
disp_unraveled.max(-1)[0]]).numpy()
loss = w1*loss1 + w2*loss2 + w3*loss3
losses.update([loss, loss1, loss2, loss3])
print('valid: Time {} Loss {}'.format(batch_time, losses))
tb_writer.add_histogram('disp_values', disp_values, epoch)
return losses.avg, ['Validation Total loss', 'Validation Photo loss', 'Validation Exp loss', 'Smoothness Loss']
@torch.no_grad()
def validate_with_gt_pose(args, val_loader, disp_net, pose_exp_net, epoch, tb_writer, sample_nb_to_log=3):
global device
# batch_time = AverageMeter()
# batch_time = AverageMeter()
depth_error_names = ['abs_rel', 'sq_rel']
depth_errors = AverageMeter(i=len(depth_error_names), precision=4)
pose_error_names = ['ATE']
pose_errors = AverageMeter(i=1, precision=4)
log_outputs = sample_nb_to_log > 0
batches_to_log = list(np.linspace(0, len(val_loader), sample_nb_to_log).astype(int))
poses_values = np.zeros(((len(val_loader)-1) * args.batch_size * (args.sequence_length-1), 6))
disp_values = np.zeros(((len(val_loader)-1) * args.batch_size * 3))
disp_net.eval()
pose_exp_net.eval()
print("Validate with GT, pose.. val: ", len(val_loader))
for i, (tgt_img, ref_imgs, gt_depth, gt_poses) in enumerate(val_loader):
tgt_img = tgt_img.to(device)
gt_depth = gt_depth.to(device)
gt_poses = gt_poses.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
b = tgt_img.shape[0]
# Compute Output
output_disp, output_uncert = disp_net(tgt_img)
# output_disp = disp_uncert[:, :1, :, :]
# output_uncert = disp_uncert[:, 1:, :, :]
output_depth = 1/output_disp
explainability_mask, output_poses = pose_exp_net(tgt_img, ref_imgs)
# print("reordered output poses: ", output_poses[:, :gt_poses.shape[1]//2])
# print("Size of output_pose: ", output_poses.size(), gt_poses.size())
reordered_output_poses = torch.cat([output_poses[:, :gt_poses.shape[1]//2],
torch.zeros(b, 1, 6).to(output_poses),
output_poses[:, gt_poses.shape[1]//2:]], dim=1)
unravelled_poses = reordered_output_poses.reshape(-1, 6)
unravelled_matrices = pose_vec2mat(unravelled_poses, rotation_mode=args.rotation_mode)
inv_transform_matrices = unravelled_matrices.reshape(b, -1, 3, 4)
rot_matrices = inv_transform_matrices[..., :3].transpose(-2, -1)
tr_vectors = -rot_matrices @ inv_transform_matrices[..., -1:]
transform_matrices = torch.cat([rot_matrices, tr_vectors], axis=-1)
first_inv_transform = inv_transform_matrices.reshape(b, -1, 3, 4)[:, :1]
final_poses = first_inv_transform[..., :3] @ transform_matrices
final_poses[..., -1:] += first_inv_transform[..., -1:]
final_poses = final_poses.reshape(b, -1, 3, 4)
if log_outputs and i in batches_to_log: # log first output of wanted batches
index = batches_to_log.index(i)
if epoch == 0:
for j, ref in enumerate(ref_imgs):
tb_writer.add_image('val Input {}/{}'.format(j, index), tensor2array(tgt_img[0]), 0)
tb_writer.add_image('val Input {}/{}'.format(j, index), tensor2array(ref[0]), 1)
log_output_tensorboard(tb_writer, 'val', index, '', epoch, output_depth, output_disp, None, None, explainability_mask)
if log_outputs and i < len(val_loader)-1:
step = args.batch_size*(args.sequence_length-1)
poses_values[i * step:(i+1) * step] = output_poses.cpu().view(-1, 6).numpy()
step = args.batch_size * 3
disp_unraveled = output_disp.cpu().view(args.batch_size, -1)
disp_values[i * step:(i+1) * step] = torch.cat([disp_unraveled.min(-1)[0],
disp_unraveled.median(-1)[0],
disp_unraveled.max(-1)[0]]).numpy()
depth_errors.update(compute_depth_errors(gt_depth, output_depth[:, 0]))
pose_errors.update(compute_pose_error(gt_poses, final_poses))
if i % args.print_freq == 0:
print('valid: Abs Rel Error {:.4f} ({:.4f}), Sq Rel Error: {:.4f} ({:.4f}), ATE {:.4f} ({:.4f})'.format(depth_errors.val[0],
depth_errors.avg[0],
depth_errors.val[1],
depth_errors.avg[1],
pose_errors.val[0],
pose_errors.avg[0]))
# logger.valid_writer.write(
# 'valid: Time {} Abs Error {:.4f} ({:.4f}), ATE {:.4f} ({:.4f})'.format(batch_time,
# depth_errors.val[0],
# depth_errors.avg[0],
# pose_errors.val[0],
# pose_errors.avg[0]))
print("Return validation output")
return depth_errors.avg + pose_errors.avg, depth_error_names + pose_error_names
if __name__ == '__main__':
main()