-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_MLP.py
118 lines (96 loc) · 3.84 KB
/
test_MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch.optim as optim
import torch.nn as nn
from PIL import Image
from torch.autograd import Variable
from data_loader import *
from network import *
import numpy as np
import time
import torchvision
import torch
import pickle
import sys
def load_checkpoints(model, PATH):
"""load existing model pretrained to some epochs
"""
if os.path.isfile(PATH):
print("=> loading checkpoint '{}'".format(PATH))
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(PATH, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(PATH))
return model
def loadSavedMoments(filename):
"""load already existing moments from disk
"""
if os.path.isfile(filename):
fileObject = open(filename, 'rb')
moments_list, labels_list, _ = pickle.load(fileObject)
else:
moments_list, labels_list = [], []
return (moments_list, labels_list)
def convertListsToTensors(moments, labels):
num_samples = len(labels)
ret = (torch.cat(moments, dim=0).view(num_samples, -1), torch.cat(labels, dim=0))
return ret
#MAIN
QF = sys.argv[1]
device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
print (device)
#path for the best model
BEST_MODEL_PATH = QF+'/checkpoints_MLP.pth'
saved_test_moments_filename = QF+'/test_moments'
net = MLPNet()
net = load_checkpoints(net, BEST_MODEL_PATH)
#move model to cuda
net = net.to(device)
test_moments, test_labels = loadSavedMoments(saved_test_moments_filename)
test_moments, test_labels = convertListsToTensors(test_moments, test_labels)
M_test = (test_moments, test_labels)
test_dataset = MLPDataset(M_test)
test_loader = DataLoader(test_dataset, batch_size = 1000, shuffle = True, num_workers = 0)
#TESTING
correct_test = 0
total_test = 0
test_accuracy = 0
org_correct = 0
org_total = 0
high_correct = 0
high_total = 0
low_correct = 0
low_total = 0
tonal_correct = 0
tonal_total = 0
denoise_correct = 0
denoise_total = 0
with torch.no_grad():
for inputs, labels in test_loader:
labels = labels.flatten()
inputs, labels = Variable(inputs.to(device)), Variable(labels.to(device))
outputs = net(inputs)
#print ("------------------TESTING OUTPUTS------------------", outputs.size())
_, predicted = torch.max(outputs.data, 1)
#print ("-----------------PREDICTED SIZE-------------------", predicted.size())
total_test += labels.size(0)
correct_test += (predicted == labels).sum().item()
org_total += (labels==0).sum().item()
high_total += (labels==1).sum().item()
low_total += (labels==2).sum().item()
tonal_total += (labels==3).sum().item()
denoise_total += (labels==4).sum().item()
org_correct += torch.min(predicted==0, labels==0).sum().item()
high_correct += torch.min(predicted==1, labels==1).sum().item()
low_correct += torch.min(predicted==2, labels==2).sum().item()
tonal_correct += torch.min(predicted==3, labels==3).sum().item()
denoise_correct += torch.min(predicted==4, labels==4).sum().item()
test_accuracy = 100 * correct_test / total_test
print("Test Accuracy of the network is : {:.3f}".format(test_accuracy))
# print ("The number of original images are ", org_total)
# print ("The number of images correctly detected are ", org_correct)
print ("Accuracy for original images is {:.2f}".format(100 * org_correct / org_total))
print ("Accuracy for high pass filtering is {:.2f}".format(100 * high_correct / high_total))
print ("Accuracy for low pass filtering is {:.2f}".format(100 * low_correct / low_total))
print ("Accuracy for tonal adjustment is {:.2f}".format(100 * tonal_correct / tonal_total))
print ("Accuracy for denoising operation is {:.2f}".format(100 * denoise_correct /denoise_total))