-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_MLP_net.py
337 lines (271 loc) · 11.3 KB
/
train_MLP_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import torch.optim as optim
import torch.nn as nn
from PIL import Image
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from torch.autograd import Variable
from data_loader import *
from network import *
import numpy as np
import time
import torchvision
import torch
import sys
import pickle
def createLoss(net):
"""create loss for the CNN
"""
loss = nn.CrossEntropyLoss()
return loss
def createOptimizer(net, learning_rate=0.01):
"""create optimizer for the CNN
"""
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
return optimizer
def getBestModelAccuracy(model, optimizer, PATH):
"""load model with highest accuracy
"""
accuracy = 0
if os.path.isfile(PATH):
print("=> loading best model accuracy'{}'".format(PATH))
best_model = torch.load(PATH)
accuracy = best_model['accuracy']
#model.load_state_dict(best_model['state_dict'])
#optimizer.load_state_dict(best_model['optimizer'])
print("=> loaded best model '{}' with accuracy {}"
.format(PATH, accuracy))
else:
print("=> no best model found at '{}'".format(PATH))
return accuracy
def loadSavedMoments(filename):
"""load already existing moments from disk
"""
if os.path.isfile(filename):
fileObject = open(filename, 'rb')
moments_list, labels_list, _ = pickle.load(fileObject)
else:
moments_list, labels_list = [], []
return (moments_list, labels_list)
def convertListsToTensors(moments, labels):
num_samples = len(labels)
ret = (torch.cat(moments, dim=0).view(num_samples, -1), torch.cat(labels, dim=0))
return ret
def load_checkpoints(model, optimizer, PATH):
"""load existing model pretrained to some epochs
"""
start_epoch = 0
if os.path.isfile(PATH):
print("=> loading checkpoint '{}'".format(PATH))
checkpoint = torch.load(PATH)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(PATH, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(PATH))
return (model, optimizer, start_epoch)
def getTestAccuracies(test_loader, net):
"""get overall and classwise testing accuracies
"""
correct = 0
total = 0
org_correct = 0
org_total = 0
high_correct = 0
high_total = 0
low_correct = 0
low_total = 0
tonal_correct = 0
tonal_total = 0
denoise_correct = 0
denoise_total = 0
accuracy_total = 0
accuracy_org = 0
accuracy_high = 0
accuracy_low = 0
accuracy_denoise = 0
accuracy_tonal = 0
with torch.no_grad():
for inp, lab in test_loader:
lab = lab.flatten()
inputs = inp.cuda(device)
labels = lab.cuda(device)
inputs, labels = Variable(inputs), Variable(labels)
#print ("INPUTS ARE ", inputs)
#print ("LABELS ARE ", labels)
outputs = net(inputs)
#print ("OUTPUTS ARE ", outputs)
#print ("------------------TESTING OUTPUTS------------------", outputs.size())
_, predicted = torch.max(outputs.data, 1)
#print ("-----------------PREDICTED SIZE-------------------", predicted.size())
total += labels.size(0)
correct += (predicted == labels).sum().item()
org_total += (labels==0).sum().item()
high_total += (labels==1).sum().item()
low_total += (labels==2).sum().item()
tonal_total += (labels==3).sum().item()
denoise_total += (labels==4).sum().item()
org_correct += torch.min(predicted==0, labels==0).sum().item()
high_correct += torch.min(predicted==1, labels==1).sum().item()
low_correct += torch.min(predicted==2, labels==2).sum().item()
tonal_correct += torch.min(predicted==3, labels==3).sum().item()
denoise_correct += torch.min(predicted==4, labels==4).sum().item()
print ("correct values ", correct)
print ("total values ", total)
accuracy_total = 100 * correct / total
accuracy_org = 100 * org_correct / org_total
accuracy_high = 100 * high_correct / high_total
accuracy_low = 100 * low_correct / low_total
accuracy_tonal = 100 * tonal_correct / tonal_total
accuracy_denoise = 100 * denoise_correct /denoise_total
print('Accuracy of the network in the first phase is : %d %%' % (
accuracy_total))
print ("Accuracy for original images is {:.2f}".format(accuracy_org))
print ("Accuracy for high pass filtering is {:.2f}".format(accuracy_high))
print ("Accuracy for low pass filtering is {:.2f}".format(accuracy_low))
print ("Accuracy for tonal adjustment is {:.2f}".format(accuracy_total))
print ("Accuracy for denoising operation is {:.2f}".format(accuracy_denoise))
return (accuracy_total, accuracy_org, accuracy_high, accuracy_low, accuracy_tonal, accuracy_denoise)
def train_MLP_net(net, batch_size, optimizer, start_epoch, n_epochs, learning_rate, M_tr, M_val, M_test):
"""train the MLP with extracted moments in phase 2
x:(Nx4096) matrix where N->number of images of random size
"""
#Print all of the hyperparameters of the training iteration:
print("===== HYPERPARAMETERS FOR PHASE 3 =====")
print("batch_size=", batch_size)
print("epochs=", n_epochs)
print("learning_rate=", learning_rate)
print("=" * 30)
#DEBUG STATEMENTS
print ("TRAINING SET MOMENTS SIZE: ", M_tr[0].size())
print ("TRAINING SET LABELS SIZE: ", M_tr[1].size())
train_dataset = MLPDataset(M_tr)
train_loader = DataLoader(train_dataset, batch_size = batch_size, shuffle = True, num_workers = 0)
val_dataset = MLPDataset(M_val)
val_loader = DataLoader(val_dataset, batch_size = batch_size, shuffle = True, num_workers = 0)
test_dataset = MLPDataset(M_test)
test_loader = DataLoader(test_dataset, batch_size = batch_size, shuffle = True, num_workers = 0)
#Create our loss and optimizer functions
loss = createLoss(net)
#Time for printing
training_start_time = time.time()
n_batches = len(train_loader)
#Train the moment generator part with C_tr (phase 1)
#Loop for n_epochs
for epoch in range(start_epoch, n_epochs):
running_loss = 0.0
print_every = n_batches // 10
print ("PRINT AFTER EVERY {} batches ".format(print_every))
start_time = time.time()
total_train_loss = 0
#print ("size of data loader is ", len(train_loader))
for i, data in enumerate(train_loader, 0):
#data represents a single mini-batch
#Get inputs
inp, lab = data
#print ("labels before flattening ", labels.size())
lab = lab.flatten()
#Wrap them in a cudaVariable object
inputs = inp.cuda(device)
labels = lab.cuda(device)
inputs, labels = Variable(inputs), Variable(labels)
#Set the parameter gradients to zero
optimizer.zero_grad()
#Forward pass, backward pass, optimize for phase 1
outputs = net.forward(inputs)
loss_size = loss(outputs, labels)
#print ("-----------------LOSS SIZE-----------------", loss_size)
loss_size.backward()
optimizer.step()
#Print statistics
#print ("Loss for batch {} is {:f}".format(i, loss_size.item()))
running_loss += loss_size.item()
total_train_loss += loss_size.item()
#Print every 10th batch of an epoch
if (i + 1) % (print_every + 1) == 0:
print("Epoch {}, {:d}% \t train_loss: {:.2f} took: {:.2f}s".format(
epoch+1, int(100 * (i+1) / n_batches), running_loss / print_every, time.time() - start_time))
#Reset running loss and time
running_loss = 0.0
start_time = time.time()
#save every epoch
state = { 'epoch': epoch + 1, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), }
torch.save(state, PATH)
#Extracting accuracy of best model till now
dummy_model = MLPNet()
dummy_optimizer = createOptimizer(dummy_model, learning_rate)
previous_best_accuracy = getBestModelAccuracy(dummy_model, dummy_optimizer, BEST_MODEL_PATH)
#At the end of the epoch, do a pass on the validation set
total_val_loss = 0
val_loss = 0
total_val = 0
correct_val = 0
current_accuracy = 0
for inp, lab in val_loader:
lab = lab.flatten()
#DEBUG STATEMENTS
#print ("-------------------INPUTS SIZE-----------------", inputs.size())
#print ("-------------------LABELS SIZE-----------------", labels.size())
#Wrap tensors in Variables
inputs = inp.cuda(device)
labels = lab.cuda(device)
inputs, labels = Variable(inputs), Variable(labels)
#Forward pass
val_outputs = net(inputs)
#print ("-------------------OUTPUTS-----------------", val_outputs)
val_loss_size = loss(val_outputs, labels)
total_val_loss += val_loss_size.item()
_, predicted = torch.max(val_outputs.data, 1)
#print ("-----------------PREDICTED SIZE-------------------", predicted.size())
total_val += labels.size(0)
correct_val += (predicted == labels).sum().item()
val_loss = total_val_loss / len(val_loader)
current_accuracy = 100 * correct_val / total_val
print('Current accuracy for validation phase is : %d %%' % (
current_accuracy))
print("Validation loss = {:.2f}".format(val_loss))
accuracy_total, accuracy_org, accuracy_high, accuracy_low, accuracy_tonal, accuracy_denoise = getTestAccuracies(test_loader, net)
with open(TRAIN_STATS_PHASE_2_FILENAME, 'a') as logfile:
logfile.write("Epoch = {:d}, Average train Loss = {:.2f}, Validation Loss = {:.2f}, Validation Accuracy = {:.3f}, Test Accuracy = {:.3f} \n".format(epoch, total_train_loss/n_batches, val_loss, current_accuracy, accuracy_total))
with open(CLASSWISE_TEST_ACCURACIES_FILENAME, 'a') as logfile:
logfile.write("Epoch = {:d}, Original = {:.3f}, High = {:.3f}, Low = {:.3f}, Tonal = {:.3f}, Denoise = {:.3f} \n".format(epoch, accuracy_org, accuracy_high, accuracy_low, accuracy_tonal, accuracy_denoise))
#Saving best model till now
if current_accuracy>previous_best_accuracy:
state = { 'accuracy': current_accuracy, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), }
torch.save(state, BEST_MODEL_PATH)
torch.cuda.empty_cache()
print("Training for phase 3 finished, took {:.2f}s".format(time.time() - training_start_time))
#MAIN
QF = sys.argv[1]
device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
print (device)
#Extract moments saved in disk
saved_train_moments_filename = QF+'/train_moments'
saved_val_moments_filename = QF+'/val_moments'
saved_test_moments_filename = QF+'/test_moments'
TRAIN_STATS_PHASE_2_FILENAME = QF+'/stats_phase_2.log'
PATH = QF+'/checkpoints_MLP.pth'
BEST_MODEL_PATH = QF+'/best_model_MLP.pth'
CLASSWISE_TEST_ACCURACIES_FILENAME = QF + '/classwise_accuracies_MLP.log'
train_moments, train_labels = loadSavedMoments(saved_train_moments_filename)
train_moments, train_labels = convertListsToTensors(train_moments, train_labels)
val_moments, val_labels = loadSavedMoments(saved_val_moments_filename)
val_moments, val_labels = convertListsToTensors(val_moments, val_labels)
test_moments, test_labels = loadSavedMoments(saved_test_moments_filename)
test_moments, test_labels = convertListsToTensors(test_moments, test_labels)
net_phase_2 = MLPNet()
batch_size_phase_2 = 500
learning_rate_phase_2 = 0.01
optimizer = createOptimizer(net_phase_2, learning_rate_phase_2)
net_phase_2, optimizer, start_epoch = load_checkpoints(net_phase_2, optimizer, PATH)
#move model and optimizer to cuda
net_phase_2 = net_phase_2.to(device)
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
M_tr = (train_moments, train_labels)
M_val = (val_moments, val_labels)
M_test = (test_moments, test_labels)
train_MLP_net(net=net_phase_2, batch_size=batch_size_phase_2, optimizer=optimizer, start_epoch=start_epoch, n_epochs=100000, learning_rate=learning_rate_phase_2, M_tr=M_tr, M_val=M_val, M_test = M_test)