-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification_test.py
273 lines (190 loc) · 6.39 KB
/
classification_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from river import datasets, drift, linear_model, metrics, preprocessing, tree, utils
from sspt import SSPT
from micro_ev_de import MICRODE
from random_s import RANDOM
import time
import csv
import random
import numpy as np
class SEA(datasets.base.SyntheticDataset):
def __init__(self, variant=0, noise=0.0, seed: int = None):
super().__init__(n_features=3, task=datasets.base.BINARY_CLF)
if variant not in (0, 1, 2, 3):
raise ValueError("Unknown variant, possible choices are: 0, 1, 2, 3")
self.variant = variant
self.noise = noise
self.seed = seed
self._threshold = {0: 6, 1: 14, 2: 3, 3: 9}[variant]
def __iter__(self):
rng = random.Random(self.seed)
while True:
x = {i: rng.uniform(0, 10) for i in range(3)}
y = x[0] + x[1] > self._threshold
if self.noise and rng.random() < self.noise:
y = not y
yield x, y
@property
def _repr_content(self):
return {**super()._repr_content, "Variant": str(self.variant)}
from scipy.io import arff
import pandas as pd
from random import shuffle
gp = 500
rolling_wind = 1000
seeds = [111, 222, 333, 444, 555, 666]
n_exec = 0
dataset_name = "SEA"
## Introduce here the dataset
dataset = datasets.synth.ConceptDriftStream(
stream=SEA(seed=42, variant=0),
drift_stream=SEA(seed=42, variant=1),
seed=seeds[n_exec],
position=25000,
width=2,
).take(50000)
# SSPT - model and metric
sspt_metric = metrics.Accuracy()
sspt_rolling_metric = utils.Rolling(metrics.Accuracy(), window_size=rolling_wind)
#case you want to plt
sspt_metric_plt = []
sspt_rolling_metric_plt = []
# Random - model and metric
random_metric = metrics.Accuracy()
random_rolling_metric = utils.Rolling(metrics.Accuracy(), window_size=rolling_wind)
#case you want to plt
random_metric_plt = []
random_rolling_metric_plt = []
# MESSPT - model and metric
mder_metric = metrics.Accuracy()
mder_rolling_metric = utils.Rolling(metrics.Accuracy(), window_size=rolling_wind)
#case you want to plt
mder_metric_plt = []
mder_rolling_metric_plt = []
#SSPT
sspt = SSPT(
estimator=preprocessing.AdaptiveStandardScaler() | tree.HoeffdingTreeClassifier(),
metric=sspt_metric,
grace_period=gp,
params_range={
"HoeffdingTreeClassifier": {
"delta": (float, (0.00001, 0.0001)),
"grace_period": (int, (100, 500)),
"tau": (float, (0.01, 0.09)),
},
},
drift_input=lambda yt, yp: 0 if yt == yp else 1,
convergence_sphere=0.000001,
seed=seeds[n_exec],
)
#random search
rnd = RANDOM(
estimator=preprocessing.AdaptiveStandardScaler() | tree.HoeffdingTreeClassifier(),
metric=random_metric,
grace_period=gp,
params_range={
"HoeffdingTreeClassifier": {
"delta": (float, (0.00001, 0.0001)),
"grace_period": (int, (100, 500)),
"tau": (float, (0.01, 0.09)),
},
},
drift_input=lambda yt, yp: 0 if yt == yp else 1,
convergence_sphere=0.000001,
seed=seeds[n_exec],
)
#MESSPT
mder = MICRODE(
reset_one=1,
estimator=preprocessing.AdaptiveStandardScaler() | tree.HoeffdingTreeClassifier(),
metric=mder_metric,
grace_period=gp,
params_range={
"HoeffdingTreeClassifier": {
"delta": (float, (0.00001, 0.0001)),
"grace_period": (int, (100, 500)),
"tau": (float, (0.01, 0.09)),
},
},
drift_input=lambda yt, yp: 0 if yt == yp else 1,
convergence_sphere=0.0005,
seed=seeds[n_exec],
)
first_print = True
first_print_r = True
first_print_m = True
first_print_d = True
first_print_mder = True
first_print_der = True
converged_yet = False
converged_yet_rnd = False
converged_yet_de = False
converged_yet_mde = False
converged_yet_der = False
converged_yet_mder = False
#Iterate over dataset. x has to be a dict.
for i, (x,y) in enumerate(dataset):
sspt_y_pred = sspt.predict_one(x)
sspt_metric.update(y, sspt_y_pred)
sspt_rolling_metric.update(y, sspt_y_pred)
sspt_metric_plt.append(sspt_metric.get())
sspt_rolling_metric_plt.append(sspt_rolling_metric.get())
sspt.learn_one(x, y)
random_y_pred = rnd.predict_one(x)
random_metric.update(y, random_y_pred)
random_rolling_metric.update(y, random_y_pred)
random_metric_plt.append(random_metric.get())
random_rolling_metric_plt.append(random_rolling_metric.get())
rnd.learn_one(x, y)
mder_y_pred = mder.predict_one(x)
mder_metric.update(y, mder_y_pred)
mder_rolling_metric.update(y, mder_y_pred)
mder_metric_plt.append(mder_metric.get())
mder_rolling_metric_plt.append(mder_rolling_metric.get())
mder.learn_one(x, y)
if sspt.converged and first_print:
print("Converged sspt at:", i)
first_print = False
converged_yet = True
if rnd.converged and first_print_r:
print("Converged random at:", i)
first_print_r = False
converged_yet_rnd = True
if mder.converged and first_print_mder:
print("Converged mder at:", i)
first_print_mder = False
converged_yet_mder = True
if sspt.converged == False and converged_yet==True:
print("Drift sspt at:", i)
first_print = True
converged_yet = False
if rnd.converged == False and converged_yet_rnd ==True:
print("Drift rnd at:", i)
first_print_r = True
converged_yet_rnd = False
if mder.converged == False and converged_yet_mder ==True:
print("Drift mder at:", i)
first_print_mder = True
converged_yet_mder = False
print("Total instances:", i + 1)
print("Best params sspt:")
print(repr(sspt.best))
print("Best params random:")
print(repr(rnd.best))
print("Best params mder:")
print(repr(mder.best))
print("SSPT: ", sspt_metric)
print("random: ", random_metric)
print("mder: ", mder_metric)
#Util information regarding each algorithm
print("RANDOM RESULTS: ")
print("random num ex: ", rnd.num_ex)
print("random num models: ", rnd.num_models )
print("random time to conv: ", rnd.time_to_conv)
print("SSPT RESULTS: ")
print("sspt num ex: ", sspt.num_ex)
print("sspt num models: ", sspt.num_models)
print("sspt time to conv: ", sspt.time_to_conv)
print("MDER RESULTS: ")
print("mder num ex: ", mder.num_ex)
print("mde num models: ", mder.num_models)
print("mder time to conv: ", mder.time_to_conv)