-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsspt.py
570 lines (475 loc) · 18.5 KB
/
sspt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
from ast import operator
import collections
import copy
import math
import numbers
import random
import typing
import time
import numpy as np
from river import anomaly, base, compose, drift, metrics, utils
ModelWrapper = collections.namedtuple("ModelWrapper", "estimator metric")
class SSPT(base.Estimator):
"""Single-pass Self Parameter Tuning
Parameters
----------
estimator
metric
params_range
drift_input
grace_period
drift_detector
convergence_sphere
seed
References
----------
[1]: Veloso, B., Gama, J., Malheiro, B., & Vinagre, J. (2021). Hyperparameter self-tuning
for data streams. Information Fusion, 76, 75-86.
"""
_START_RANDOM = "random"
_START_WARM = "warm"
def __init__(
self,
estimator: base.Estimator,
metric: metrics.base.Metric,
params_range: typing.Dict[str, typing.Tuple],
drift_input: typing.Callable[[float, float], float],
grace_period: int = 500,
drift_detector: base.DriftDetector = drift.ADWIN(),
convergence_sphere: float = 0.001,
seed: int = None,
):
super().__init__()
##To measure cost
self._time_to_conv = []
self._time_acc = 0
self._num_ex = 0
self._num_ex_array = []
self._num_models = 0
self._num_models_array = []
##
self.estimator = estimator
self.metric = metric
self.params_range = params_range
self.drift_input = drift_input
self.grace_period = grace_period
self.drift_detector = drift_detector
self.convergence_sphere = convergence_sphere
self.seed = seed
self._n = 0
self._converged = False
self._rng = random.Random(self.seed)
self._best_estimator = None
self._simplex = self._create_simplex(estimator)
# Models expanded from the simplex
self._expanded: typing.Optional[typing.Dict] = None
# Convergence criterion
self._old_centroid = None
# Meta-programming
border = self.estimator
if isinstance(border, compose.Pipeline):
border = border[-1]
if isinstance(border, (base.Classifier, base.Regressor)):
self._scorer_name = "predict_one"
elif isinstance(border, anomaly.base.AnomalyDetector):
self._scorer_name = "score_one"
elif isinstance(border, anomaly.base.AnomalyDetector):
self._scorer_name = "classify"
def __generate(self, p_data) -> numbers.Number:
p_type, p_range = p_data
if p_type == int:
return self._rng.randint(p_range[0], p_range[1])
elif p_type == float:
return self._rng.uniform(p_range[0], p_range[1])
def __combine(self, p_info, param1, param2, func):
p_type, p_range = p_info
new_val = func(param1, param2)
# Range sanity checks
if new_val < p_range[0]:
new_val = p_range[0]
if new_val > p_range[1]:
new_val = p_range[1]
new_val = round(new_val, 0) if p_type == int else new_val
return new_val
def __flatten(self, prefix, scaled, p_info, e_info):
_, p_range = p_info
interval = p_range[1] - p_range[0]
scaled[prefix] = (e_info - p_range[0]) / interval
def _recurse_params(
self, operation, p_data, e1_data, *, func=None, e2_data=None, prefix=None, scaled=None
):
# Sub-component needs to be instantiated
if isinstance(e1_data, tuple):
sub_class, sub_data1 = e1_data
if operation == "combine":
_, sub_data2 = e2_data
else:
sub_data2 = {}
sub_config = {}
for sub_param, sub_info in p_data.items():
if operation == "scale":
sub_prefix = prefix + "__" + sub_param
else:
sub_prefix = None
sub_config[sub_param] = self._recurse_params(
operation=operation,
p_data=sub_info,
e1_data=sub_data1[sub_param],
func=func,
e2_data=sub_data2.get(sub_param, None),
prefix=sub_prefix,
scaled=scaled,
)
return sub_class(**sub_config)
# We reached the numeric parameters
if isinstance(p_data, tuple):
if operation == "generate":
return self.__generate(p_data)
if operation == "scale":
self.__flatten(prefix, scaled, p_data, e1_data)
return
# combine
return self.__combine(p_data, e1_data, e2_data, func)
# The sub-parameters need to be expanded
config = {}
for p_name, p_info in p_data.items():
e1_info = e1_data[p_name]
if operation == "combine":
e2_info = e2_data[p_name]
else:
e2_info = {}
if operation == "scale":
sub_prefix = prefix + "__" + p_name if len(prefix) > 0 else p_name
else:
sub_prefix = None
if not isinstance(p_info, dict):
config[p_name] = self._recurse_params(
operation=operation,
p_data=p_info,
e1_data=e1_info,
func=func,
e2_data=e2_info,
prefix=sub_prefix,
scaled=scaled,
)
else:
sub_config = {}
for sub_name, sub_info in p_info.items():
if operation == "scale":
sub_prefix2 = sub_prefix + "__" + sub_name
else:
sub_prefix2 = None
sub_config[sub_name] = self._recurse_params(
operation=operation,
p_data=sub_info,
e1_data=e1_info[sub_name],
func=func,
e2_data=e2_info.get(sub_name, None),
prefix=sub_prefix2,
scaled=scaled,
)
config[p_name] = sub_config
return config
def _random_config(self):
return self._recurse_params(
operation="generate",
p_data=self.params_range,
e1_data=self.estimator._get_params()
)
def _create_simplex(self, model) -> typing.List:
# The simplex is divided in:
# * 0: the best model
# * 1: the 'good' model
# * 2: the worst model
simplex = [None] * 3
simplex[0] = ModelWrapper(
self.estimator.clone(self._random_config(), include_attributes=True),
self.metric.clone(include_attributes=True),
)
simplex[1] = ModelWrapper(
model.clone(self._random_config(), include_attributes=True),
self.metric.clone(include_attributes=True),
)
simplex[2] = ModelWrapper(
self.estimator.clone(self._random_config(), include_attributes=True),
self.metric.clone(include_attributes=True),
)
return simplex
def _sort_simplex(self):
"""Ensure the simplex models are ordered by predictive performance."""
if self.metric.bigger_is_better:
self._simplex.sort(key=lambda mw: mw.metric.get(), reverse=True)
else:
self._simplex.sort(key=lambda mw: mw.metric.get())
def _gen_new_estimator(self, e1, e2, func):
"""Generate new configuration given two estimators and a combination function."""
e1_p = e1.estimator._get_params()
e2_p = e2.estimator._get_params()
new_config = self._recurse_params(
operation="combine",
p_data=self.params_range,
e1_data=e1_p,
func=func,
e2_data=e2_p
)
# Modify the current best contender with the new hyperparameter values
new = ModelWrapper(
copy.deepcopy(self._simplex[0].estimator),
self.metric.clone(include_attributes=True),
)
new.estimator.mutate(new_config)
return new
def _nelder_mead_expansion(self) -> typing.Dict:
"""Create expanded models given the simplex models."""
expanded = {}
# Midpoint between 'best' and 'good'
expanded["midpoint"] = self._gen_new_estimator(
self._simplex[0], self._simplex[1], lambda h1, h2: (h1 + h2) / 2
)
# Reflection of 'midpoint' towards 'worst'
expanded["reflection"] = self._gen_new_estimator(
expanded["midpoint"], self._simplex[2], lambda h1, h2: 2 * h1 - h2
)
# Expand the 'reflection' point
expanded["expansion"] = self._gen_new_estimator(
expanded["reflection"], expanded["midpoint"], lambda h1, h2: 2 * h1 - h2
)
# Shrink 'best' and 'worst'
expanded["shrink"] = self._gen_new_estimator(
self._simplex[0], self._simplex[2], lambda h1, h2: (h1 + h2) / 2
)
# Contraction of 'midpoint' and 'worst'
expanded["contraction1"] = self._gen_new_estimator(
expanded["midpoint"], self._simplex[2], lambda h1, h2: (h1 + h2) / 2
)
# Contraction of 'midpoint' and 'reflection'
expanded["contraction2"] = self._gen_new_estimator(
expanded["midpoint"], expanded["reflection"], lambda h1, h2: (h1 + h2) / 2
)
return expanded
def _nelder_mead_operators(self):
b = self._simplex[0].metric
g = self._simplex[1].metric
w = self._simplex[2].metric
r = self._expanded["reflection"].metric
c1 = self._expanded["contraction1"].metric
c2 = self._expanded["contraction2"].metric
if c1.is_better_than(c2):
self._expanded["contraction"] = self._expanded["contraction1"]
else:
self._expanded["contraction"] = self._expanded["contraction2"]
if r.is_better_than(g):
if b.is_better_than(r):
self._simplex[2] = self._expanded["reflection"]
else:
e = self._expanded["expansion"].metric
if e.is_better_than(b):
self._simplex[2] = self._expanded["expansion"]
else:
self._simplex[2] = self._expanded["reflection"]
else:
if r.is_better_than(w):
self._simplex[2] = self._expanded["reflection"]
else:
c = self._expanded["contraction"].metric
if c.is_better_than(w):
self._simplex[2] = self._expanded["contraction"]
else:
self._simplex[2] = self._expanded["shrink"]
self._simplex[1] = self._expanded["midpoint"]
self._sort_simplex()
for i in range(len(self._simplex)):
self._simplex[i] = ModelWrapper(copy.deepcopy(self._simplex[i].estimator),
self.metric.clone(include_attributes=True))
def _normalize_flattened_hyperspace(self, orig):
scaled = {}
self._recurse_params(
operation="scale",
p_data=self.params_range,
e1_data=orig,
prefix="",
scaled=scaled
)
return scaled
@property
def _models_converged(self) -> bool:
# Normalize params to ensure they contribute equally to the stopping criterion
# 1. Simplex in sphere
scaled_params_b = self._normalize_flattened_hyperspace(
self._simplex[0].estimator._get_params()
)
scaled_params_g = self._normalize_flattened_hyperspace(
self._simplex[1].estimator._get_params()
)
scaled_params_w = self._normalize_flattened_hyperspace(
self._simplex[2].estimator._get_params()
)
max_dist = max(
[
utils.math.minkowski_distance(scaled_params_b, scaled_params_g, p=2),
utils.math.minkowski_distance(scaled_params_b, scaled_params_w, p=2),
utils.math.minkowski_distance(scaled_params_g, scaled_params_w, p=2),
]
)
hyper_points = [
list(scaled_params_b.values()),
list(scaled_params_g.values()),
list(scaled_params_w.values()),
]
vectors = np.array(hyper_points)
new_centroid = dict(zip(scaled_params_b.keys(), np.mean(vectors, axis=0)))
centroid_distance = utils.math.minkowski_distance(
self._old_centroid, new_centroid, p=2
)
self._old_centroid = new_centroid
ndim = len(scaled_params_b)
r_sphere = max_dist * math.sqrt((ndim / (2 * (ndim + 1))))
if r_sphere < self.convergence_sphere or centroid_distance == 0:
return True
return False
def _learn_converged(self, x, y):
scorer = getattr(self._best_estimator, self._scorer_name)
y_pred = scorer(x)
input = self.drift_input(y, y_pred)
self.drift_detector.update(input)
# We need to start the optimization process from scratch
if self.drift_detector.drift_detected:
print("drift detected")
self._n = 0
self._converged = False
self._simplex = self._create_simplex(self._best_estimator)
# There is no proven best model right now
self._best_estimator = None
self._time_acc = 0
self._num_ex = 0
self._num_models = 0
return
self._best_estimator.learn_one(x, y)
def _learn_not_converged(self, x, y):
self._num_ex = self._num_ex + 1
t1 = time.time()
for wrap in self._simplex:
scorer = getattr(wrap.estimator, self._scorer_name)
y_pred = scorer(x)
wrap.metric.update(y, y_pred)
wrap.estimator.learn_one(x, y)
# Keep the simplex ordered
self._sort_simplex()
if not self._expanded:
self._expanded = self._nelder_mead_expansion()
for wrap in self._expanded.values():
scorer = getattr(wrap.estimator, self._scorer_name)
y_pred = scorer(x)
wrap.metric.update(y, y_pred)
wrap.estimator.learn_one(x, y)
if self._n == self.grace_period:
self._num_models = self._num_models + 9
self._n = 0
# 1. Simplex in sphere
scaled_params_b = self._normalize_flattened_hyperspace(
self._simplex[0].estimator._get_params(),
)
scaled_params_g = self._normalize_flattened_hyperspace(
self._simplex[1].estimator._get_params(),
)
scaled_params_w = self._normalize_flattened_hyperspace(
self._simplex[2].estimator._get_params(),
)
hyper_points = [
list(scaled_params_b.values()),
list(scaled_params_g.values()),
list(scaled_params_w.values()),
]
vectors = np.array(hyper_points)
self._old_centroid = dict(
zip(scaled_params_b.keys(), np.mean(vectors, axis=0))
)
# Update the simplex models using Nelder-Mead heuristics
self._nelder_mead_operators()
# Discard expanded models
self._expanded = None
if self._models_converged:
t2 = time.time()
self._time_acc = self._time_acc+(t2-t1)
self._time_to_conv.append(self._time_acc)
self._num_ex_array.append(self._num_ex)
self._num_models_array.append(self._num_models)
self._converged = True
self._best_estimator = self._simplex[0].estimator
t2 = time.time()
self._time_acc = self._time_acc+(t2-t1)
def learn_one(self, x, y):
self._n += 1
if self.converged:
self._learn_converged(x, y)
else:
self._learn_not_converged(x, y)
return self
@property
def best(self):
if not self._converged:
# Lazy selection of the best model
self._sort_simplex()
return self._simplex[0].estimator
return self._best_estimator
@property
def converged(self):
return self._converged
def predict_one(self, x, **kwargs):
try:
return self.best.predict_one(x, **kwargs)
except NotImplementedError:
border = self.best
if isinstance(border, compose.Pipeline):
border = border[-1]
raise AttributeError(
f"'predict_one' is not supported in {border.__class__.__name__}."
)
def predict_proba_one(self, x, **kwargs):
try:
return self.best.predict_proba_one(x, **kwargs)
except NotImplementedError:
border = self.best
if isinstance(border, compose.Pipeline):
border = border[-1]
raise AttributeError(
f"'predict_proba_one' is not supported in {border.__class__.__name__}."
)
def score_one(self, x, **kwargs):
try:
return self.best.score_one(x, **kwargs)
except NotImplementedError:
border = self.best
if isinstance(border, compose.Pipeline):
border = border[-1]
raise AttributeError(
f"'score_one' is not supported in {border.__class__.__name__}."
)
def debug_one(self, x, **kwargs):
try:
return self.best.score_one(x, **kwargs)
except NotImplementedError:
raise AttributeError(
f"'debug_one' is not supported in {self.best.__class__.__name__}."
)
@property
def time_to_conv(self):
if self.converged:
return self._time_to_conv
else:
self._time_to_conv.append(self._time_acc)
return self._time_to_conv
@property
def num_ex(self):
if self.converged:
return self._num_ex_array
else:
self._num_ex_array.append(self._num_ex)
return self._num_ex_array
@property
def num_models(self):
if self.converged:
return self._num_models_array
else:
self._num_models_array.append(self._num_models)
return self._num_models_array