-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
302 lines (261 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from __future__ import division
from __future__ import print_function
import time
import random
import tensorflow as tf
import scipy.io as sio
from utils import *
from models import GCN, MLP
import scipy.sparse as sp
import objgraph
import gc
from sklearn import metrics
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
# tf.reset_default_graph()
# Set random seed
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset', 'cora', 'Dataset string.') # 'cora', 'citeseer', 'pubmed'
flags.DEFINE_string('model', 'gcn', 'Model string.') # 'gcn', 'gcn_cheby', 'dense'
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 100, 'Number of epochs to train.')
flags.DEFINE_integer('hidden1', 32, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_float('dropout', 0.5, 'Dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 5e-4, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_integer('early_stopping', 10, 'Tolerance for early stopping (# of epochs).')
flags.DEFINE_integer('max_degree', 3, 'Maximum Chebyshev polynomial degree.')
# Load data
gene_net, gene2idx, gnodes= load_ppi(fname='data/bio-ppi.csv')
mirna2gene, mirna2idx, mlist, m2g_net = load_mirna_gene(gnet=gene_net.copy(), gnodes=gnodes, fname='data/bio-mirna-gene.csv')
diease2gene, diease2idx, dlist, d2g_net = load_diease_gene(gnet=gene_net.copy(), gnodes=gnodes, fname='data/bio-diease-gene.csv')
diease2mirna = load_diease_mirna(gnodes=gnodes, mlist=mlist, dlist=dlist, fname='data/bio-diease-mirna.csv')
l=len(gnodes)
diease2mirna_list = list(diease2mirna)
diease2mirna_id_list = []
for i in range(len(diease2mirna_list)):
id=diease2idx[diease2mirna_list[i]]
tt=list(diease2mirna[diease2mirna_list[i]])
for j in range(len(tt)):
g = mirna2idx[tt[j]]
diease2mirna_id_list.append([id-l,g-l])
adj_d2m = np.zeros((len(dlist),len(mlist)))
for j in range(len(diease2mirna_id_list)):
adj_d2m[diease2mirna_id_list[j][0]][diease2mirna_id_list[j][1]]=1
labels_row_total = []
positive_label = []
neg_label = []
for t in range(len(adj_d2m)):
if np.sum(adj_d2m[t])!=0:
g = np.where(adj_d2m[t] == 1)
labels_row_total.append(t)
for lb in range(len(g[0])):
positive_label.append((t,g[0][lb]))
for nn in range(len(adj_d2m)):
for ne in range(adj_d2m.shape[1]):
if adj_d2m[nn][ne] == 0:
neg_label.append((nn,ne))
labels_row_total = list(set(labels_row_total))
# labels_row = labels_row_total[0:100]
# labels_row_test = labels_row_total[100:len(labels_row_total)]
random.shuffle(labels_row_total)
labels_row = labels_row_total[0:310]
labels_row_test = labels_row_total[310:len(labels_row_total)]
positive_train_label_row = []
for trainl in range(len(labels_row)):
for lbe in range(len(positive_label)):
if labels_row[trainl] == (list(positive_label[lbe]))[0]:
positive_train_label_row.append(positive_label[lbe])
positive_test_label_row = []
for trainl in range(len(labels_row_test)):
for lbe in range(len(positive_label)):
if labels_row_test[trainl] == (list(positive_label[lbe]))[0]:
positive_test_label_row.append(positive_label[lbe])
neg_train_label_row = []
for trainl in range(len(labels_row)):
for lbe in range(len(neg_label)):
if labels_row[trainl] == (list(neg_label[lbe]))[0]:
neg_train_label_row.append(neg_label[lbe])
neg_test_label_row = []
for trainl in range(len(labels_row_test)):
for lbe in range(len(neg_label)):
if labels_row_test[trainl] == (list(neg_label[lbe]))[0]:
neg_test_label_row.append(neg_label[lbe])
mapping = dict( gene2idx.items() )
gene_net = nx.relabel_nodes(gene_net, mapping)
adj_gene = nx.adjacency_matrix(gene_net)
gene_degrees = np.array(adj_gene.sum(axis=0)).squeeze()
mapping = dict( gene2idx.items() + mirna2idx.items() )
m2g_net = nx.relabel_nodes(m2g_net, mapping)
adj_m2g = nx.adjacency_matrix(m2g_net)
adj_m2g = adj_m2g.todense()
adj_m2g = np.array(adj_m2g)
adj_m2g = adj_m2g[len(gnodes):len(m2g_net.nodes),0:len(gnodes)] #len(gnodes):len(m2g_net.nodes),0:len(gnodes)
# adj_m2g = sp.csc_matrix(adj_m2g, dtype='float32')
print(len(gnodes))
mapping = dict( gene2idx.items() + diease2idx.items() )
d2g_net = nx.relabel_nodes(d2g_net, mapping)
adj_d2g = nx.adjacency_matrix(d2g_net)
adj_d2g = adj_d2g.todense()
adj_d2g = np.array(adj_d2g)
adj_d2g = adj_d2g[len(gnodes):len(d2g_net.nodes),0:len(gnodes)] #len(gnodes):len(d2g_net.nodes),0:len(gnodes) 19081:19475,0:19081
# adj_d2g = sp.csc_matrix(adj_d2g, dtype='float32')
features_g = generate_node2vec_embeddings(adj_gene, 128, False)
# features_g = sp.identity(len(gnodes))
features_g = sp.csr_matrix(features_g).tolil()
features_g = preprocess_features(features_g)
A = adj_gene.copy() # the observed network
# A[test_pos[0], test_pos[1]] = 0 # mask test links
# A[test_pos[1], test_pos[0]] = 0 # mask test links
A = sp.csr_matrix(A)
if FLAGS.model == 'gcn':
support = [preprocess_adj(A)]
num_supports = 1 #A.shape[0]
model_func = GCN
elif FLAGS.model == 'gcn_cheby':
support = chebyshev_polynomials(A, FLAGS.max_degree)
num_supports = 1 + FLAGS.max_degree
model_func = GCN
elif FLAGS.model == 'dense':
support = [preprocess_adj(A)] # Not used
num_supports = 1
model_func = MLP
else:
raise ValueError('Invalid argument for model: ' + str(FLAGS.model))
# Define model evaluation function
def evaluate(features_g, support, labels_row_test, placeholders):
t_test = time.time()
feed_dict_val = construct_feed_dict(features_g, support, adj_m2g, adj_d2g, adj_d2m, len(mlist), len(dlist), labels_row_test, positive_test_label_row, neg_test_label_row, placeholders)
outs_val = sess.run([model.loss, model.accuracy, model.predict(), model.loss_pres, model.loss_labs], feed_dict=feed_dict_val)
r_predict = outs_val[2][labels_row_test,:]
r_lab = adj_d2m[labels_row_test,:]
y_true = outs_val[4]
y_score = outs_val[3]
save_test_result(y_score,y_true)
fpr_hgcn, tpr_hgcn, thresholds_hgcn = roc_curve(y_true, y_score, drop_intermediate=False)
d = {'Threshold': thresholds_hgcn, 'True Positive Rate': tpr_hgcn, 'False Positive Rate': fpr_hgcn}
metric_table = pd.DataFrame(d, columns=['Threshold', 'True Positive Rate', 'False Positive Rate'])
fpr_imcmda, tpr_imcmda, thresholds_imcmda = load_imcmda(fname_true='data/imcmda/interaction.xlsx', fname_score='data/imcmda/score.xlsx')
fpr_glnmda, tpr_glnmda = load_glnmda(fname_fpr='data/glnmda/FPR.xlsx', fname_tpr='data/glnmda/TPR.xlsx')
fpr_spm, tpr_spm = load_spm(fname_fpr='data/spm/FPR.xlsx', fname_tpr='data/spm/TPR.xlsx')
pic_curve(fpr_imcmda, tpr_imcmda, fpr_glnmda, tpr_glnmda, fpr_spm, tpr_spm, fpr_hgcn, tpr_hgcn)
# print(metric_table)
# acc = get_acc_test(outs_val[3],outs_val[4])
acc = get_acc_train(outs_val[3], outs_val[4])
return outs_val[0], outs_val[1], acc, (time.time() - t_test)
# patch=19
# kfold_num=int(len(labels_row_total)/patch)
# kfold_test_auc = []
# for split in range(kfold_num):
# print("kfold num:",'%04d' % split)
# random.shuffle(labels_row_total)
# labels_row = labels_row_total[0:patch*(kfold_num-1)]
# labels_row_test = labels_row_total[patch*(kfold_num-1):len(labels_row_total)]
tf.reset_default_graph()
# Define placeholders
placeholders = {
'support': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'features_g': tf.sparse_placeholder(tf.float32, shape=tf.constant(features_g[2], dtype=tf.int64)),
'adj_m2g': tf.placeholder(tf.float32, shape=(None, adj_m2g.shape[1])),
'adj_d2g': tf.placeholder(tf.float32, shape=(None, adj_d2g.shape[1])),
'adj_d2m': tf.placeholder(tf.float32, shape=(None, adj_d2m.shape[1])),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder(tf.int32), # helper variable for sparse dropout
'num_features_diease_nonzero': tf.placeholder(tf.int32), # helper variable for sparse dropout
'mirna_length': tf.placeholder(tf.int32),
'diease_length': tf.placeholder(tf.int32),
'labels_row': tf.placeholder(tf.int32),
'positive_train_label_row': tf.placeholder(tf.int32, shape=(None,2)),
'neg_train_label_row': tf.placeholder(tf.int32, shape=(None,2))
}
# Create model
model = model_func(placeholders, input_dim=features_g[2][1], logging=True)
# Initialize session
sess = tf.Session()
feed_dict = construct_feed_dict(features_g, support, adj_m2g, adj_d2g, adj_d2m, len(mlist), len(dlist), labels_row, positive_train_label_row, neg_train_label_row, placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
sess.run(tf.global_variables_initializer(), feed_dict=feed_dict)
# Train model
for epoch in range(FLAGS.epochs):
t = time.time()
# Construct feed dictionary
feed_dict = construct_feed_dict(features_g, support, adj_m2g, adj_d2g, adj_d2m, len(mlist), len(dlist), labels_row, positive_train_label_row, neg_train_label_row, placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
outs = sess.run([model.opt_op, model.loss, model.accuracy, model.predict(), model.placeholders['adj_d2m'], model.test, model.loss_pres,model.loss_labs, model.output_d2g, model.output_m2g, model.negative_sample], feed_dict=feed_dict)
preds = outs[6]
labels = outs[7]
acc = get_acc_train(preds,labels)
dai = FLAGS.epochs-1
if epoch == dai:
save_train_result(preds,labels)
# d2g = outs[8] #(394,32)
# m2g = outs[9] #(569,32)
#
# negative_sample = outs[10]
#
# train_adj_d2m = adj_d2m[labels_row,:]
# ttt = np.sum(train_adj_d2m)
# op1 = 0.0
# op2 = 0.0
# op3 = np.zeros((32,))
# for dis in range(len(positive_train_label_row)):
# edge = list(positive_train_label_row[dis])
# op3 = op3 +(d2g[edge[0]] - m2g[edge[1]])
# op1 = op1+np.linalg.norm((d2g[edge[0]] - m2g[edge[1]]))
# op2 = op2+np.sqrt(np.sum(np.square(d2g[edge[0]] - m2g[edge[1]])))
# average_positive_train_dis = op1/len(positive_train_label_row)
# average_positive_train_vector = op3/len(positive_train_label_row)
#
# neg_dis_total = []
# neg_dis = []
# neg_dis_edge = []
# for neg in range(len(neg_train_label_row)):
# n_edge = list(neg_train_label_row[neg])
# if (np.linalg.norm(d2g[n_edge[0]]-m2g[n_edge[1]]) > average_positive_train_dis):
# neg_dis_total.append( (np.linalg.norm(d2g[n_edge[0]]-m2g[n_edge[1]]), (n_edge[0],n_edge[1])) )
# neg_dis.append( np.linalg.norm(d2g[n_edge[0]]-m2g[n_edge[1]]) )
# neg_dis_edge.append( (n_edge[0],n_edge[1]) )
#
# k_max_dis_idx = np.argsort(neg_dis)[::-1][:len(positive_train_label_row)]
# k_max_dis = [neg_dis[j] for j in k_max_dis_idx]
# k_max_edge = [neg_dis_edge[j] for j in k_max_dis_idx]
#
# test_array = np.array(neg_dis_edge) #ndarray qiepian
# kkv = test_array[k_max_dis_idx]
# test_k_max_edge = kkv.tolist()
#
# test_adj_d2m = adj_d2m[labels_row_test, :]
# ttt1 = np.sum(test_adj_d2m)
# train_adj_d2m = sp.csr_matrix(train_adj_d2m)
# Validation
# cost, v_acc, auc, duration = evaluate(features_rna, support, test_diease_rna_adj, test_features_diease, placeholders)
# if epoch % 20 == 0:
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(outs[1]),
"train_acc1=", "{:.5f}".format(outs[2]),
"train_acc2=", "{:.5f}".format(acc[0]),
"train_auc=", "{:.5f}".format(acc[1]),
"train_aps=", "{:.5f}".format(acc[2]),
"time=", "{:.5f}".format(time.time() - t))
# if epoch > FLAGS.early_stopping and cost_val[-1] > np.mean(cost_val[-(FLAGS.early_stopping+1):-1]):
# print("Early stopping...")
# break
print("Optimization Finished!")
# # Testing
test_cost, test_acc, acc, test_duration = evaluate(features_g, support, labels_row_test, placeholders)
print("Test set results:", "cost=", "{:.5f}".format(test_cost),"accuracy=", "{:.5f}".format(test_acc),
"acc2=", "{:.5f}".format(acc[0]), "auc=", "{:.5f}".format(acc[1]),
"aps=", "{:.5f}".format(acc[2]), "time=", "{:.5f}".format(test_duration))
# kfold_test_auc.append(acc[1])
tf.get_default_graph().finalize()
objgraph.show_growth()
gc.collect()
sess.close()
# result_test_auc = np.sum(kfold_test_auc)/kfold_num
# print( "According ",'%02d' % kfold_num, "-fold Cross Validation, the result test auc= ","{:.5f}".format(result_test_auc) )