-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
58 lines (43 loc) · 2.07 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import pandas as pd
import numpy as np
from sklearn import model_selection
from sklearn.metrics import accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
import os
def processing(pos):
workdata = pd.read_csv('dicts/'+pos+'_crossdict_ss.csv', header=None, encoding='utf-8-sig', delimiter='\t')
X_work = workdata._get_numeric_data()
try:
model_name = 'models/'+pos+'-model.save'
log_reg_work(X_work, model_name, pos)
print('Using model:', model_name)
except FileNotFoundError:
model_name = 'models/'+log_reg_train(part_of_speech)
log_reg_work(X_work, model_name, part_of_speech)
print('Create model:', model_name)
def log_reg_train(pos):
dataset = pd.read_csv('sk-learn-'+part_of_speech+'.csv', encoding='utf-8-sig',delimiter='\t')
X = dataset[['komi_len', 'udm_len', 'lev', 'sem_sim']]
y = dataset['res']
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.25)
model_lr = LogisticRegression()
model_lr.fit(X_train, y_train)
y_test_predict_proba = model_lr.predict_proba(X_test)
y_test_predict = model_lr.predict(X_test)
accuracy = accuracy_score(y_test, y_test_predict)
print('Accuracy = %.3f'%accuracy)
model_name = pos+'-model.save'
joblib.dump(model_lr, model_name)
return model_name
def log_reg_work(X_work, model_name, part_of_speech):
model_lr = joblib.load(model_name)
y_work_predict_proba = model_lr.predict_proba(X_work)
y_work_predict = model_lr.predict(X_work)
f_in = open('dicts/'+pos+'_crossdict_ss.csv', 'r', encoding='utf-8-sig').readlines()
f_out = open('dicts/'+pos+'_crossdict_res.csv', 'a', encoding='utf-8-sig')
for line in f_in[:]:
n = f_in.index(line)
line=line.strip('\n')
f_out.write('\t'.join([line, str(y_work_predict_proba[n][1]),str(y_work_predict[n])])+'\n')
f_out.close()