-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisual.py
171 lines (142 loc) · 3.84 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import sklearn
from sklearn import linear_model
import numpy as np
import pickle
import nltk
from nltk.corpus import stopwords
import csv
from nltk.stem.snowball import SnowballStemmer
import pickle
import math
import numpy as np
import re
from tf_idf import *
import matplotlib.pyplot as plt
#Load the distinct words list
with open('distinct.pkl','rb') as f:
distinct_words=pickle.load(f)
#Load the American Airlines tweets
with open('aal.pkl','rb') as f:
tweets_temp=pickle.load(f)
#Load the TF_IDF vector
with open('tf_idf.pkl','rb') as f:
TF_IDF_VECTOR=pickle.load(f)
#NTK's SnowballStemmer
stemmer=SnowballStemmer("english")
#Special characters to be stripped
special_characters=['[',']','\\','/',',','"','@','#','.']
day_to_index={} #dictionary to map dates in string to index
count=0
tot=92 #Since total number of days was 92
for tw in tweets_temp:
if(tw[-1] not in day_to_index):
day_to_index[tw[-1]]=tot-count-1
count+=1
#print(tw[-1])
print("Distinct days ", len(day_to_index))
print("Tweet count ",len(tweets_temp))
'''
for key,val in day_to_index.items():
print(key,val)
'''
#data will contain the emotion values for each day
data=[]
for i in range(92):
temp=[0,0,0,0,0,0,0]
data.append(temp)
tweet_count=1
#Process each tweet
for tw1 in tweets_temp:
if(tweet_count%100==1):
print("Tweets processed ",tweet_count,"/",len(tweets_temp))
tweet_count+=1
date=day_to_index[tw1[-1]] #date of the in-process tweet
tw1=tw1[0:-1] #remove the date token
testing1=[] #will contain the stemmed tokens
tw=[] #remove special character tokens
#special characters removal
for i in tw1:
if(i not in special_characters):
tw.append(i)
#stemming each word
for i in range(len(tw)):
testing1.append(stemmer.stem(tw[i]))
#convert into 1*6072 vector
testing_row=[]
for i in range(len(distinct_words)):
if(distinct_words[i] in testing1):
testing_row.append(1)
else:
testing_row.append(0)
ans=np.matmul(testing_row,TF_IDF_VECTOR)
#now ans contains the score for each emotion
#add the values to respective slots for the day on which the tweet was made
for i in range(len(ans)):
data[date][i]+=ans[i]
#normalize each day's emotion scores
for row in data:
mx=sum(row)
for j in range(len(row)):
row[j]=float(row[j])/mx
#Make different lists for visualization purposes
close_data=[]
open_data=[]
joy=[]
fear=[]
anger=[]
sadness=[]
disgust=[]
shame=[]
guilt=[]
for i in range(len(day_to_index)):
close_data.append(0)
open_data.append(0)
reader=csv.reader(open('AAL.csv','r'))
no_tweets=[]
for row in data:
joy.append(row[0])
fear.append(row[1])
anger.append(row[2])
sadness.append(row[3])
disgust.append(row[4])
shame.append(row[5])
guilt.append(row[6])
for row in reader:
#print(row)
if(row[0] not in day_to_index):
no_tweets.append(row[0])
if(row[0]!='Date' and row[0] in day_to_index):
date=day_to_index[row[0]]
open_data[date]=float(row[1])
close_data[date]=float(row[4])
x_axis=[i for i in range(len(day_to_index))] #day count for the visualisation graphs
#############################################
#Filling in values for absent financial data on weekends
i=0
j=0
while(i<len(open_data)):
j=i+1
while(j<len(open_data) and open_data[j]==0):
open_data[j]=open_data[i]
j+=1
j=i+1
while(j<len(open_data) and close_data[j]==0):
close_data[j]=close_data[i]
j+=1
i=j
##############################################
fig,(ax1,ax2)=plt.subplots(2,1)
ax1.plot(x_axis,open_data,label='opening')
ax1.plot(x_axis,close_data,label='closed')
ax1.legend(loc="upper right")
ax2.plot(x_axis,joy,label='happiness')
ax2.plot(x_axis,fear,label='fear')
ax2.plot(x_axis,anger,label='anger')
ax2.plot(x_axis,sadness,label='sadness')
#ax2.plot(x_axis,disgust,label='disgust')
#ax2.plot(x_axis,shame,label='shame')
#ax2.plot(x_axis,guilt,label='guilt')
ax2.legend(loc="upper right")
plt.show()
#print(no_tweets)
040-66303504