-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGAN_example.py
379 lines (295 loc) Β· 14 KB
/
GAN_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
# The GPU id to use, usually either "0" or "1";
os.environ["CUDA_VISIBLE_DEVICES"]="0"
# Just disables the warning for CPU instruction set,
# doesn't enable AVX/FMA
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import numpy as np
import random
import math
import time
import cv2
import glob
from matplotlib import pyplot as plt
import tensorflow as tf
import keras.backend as K
from keras.models import Sequential, load_model
from keras.layers import Dense, Activation, Flatten, Reshape
from keras.layers import Conv2D, Conv2DTranspose, UpSampling2D
from keras.layers import LeakyReLU, Dropout
from keras.layers import BatchNormalization
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard
config = tf.ConfigProto(device_count = {'GPU': 1 , 'CPU': 8})
sess = tf.Session(config=config)
K.set_session(sess)
class ElapsedTimer(object):
def __init__(self):
self.start_time = time.time()
def elapsed(self,sec):
if sec < 60:
return str(sec) + " sec"
elif sec < (60 * 60):
return str(sec / 60) + " min"
else:
return str(sec / (60 * 60)) + " hr"
def elapsed_time(self):
print("Elapsed: %s " % self.elapsed(time.time() - self.start_time) )
class DCGAN:
def __init__(self, generator_model):
self.IMROWS = 128
self.IMCOLS = 128
self.IMCHANNELS = 3
self.discriminator = self.build_discriminator()
if generator_model is None:
self.generator = self.build_generator()
else:
print("Loading saved generator model")
self.generator = generator_model
self.AM = None # adversarial model
self.DM = None # discriminator model
def build_discriminator(self):
discr = Sequential()
depth = 32
# In: 102 x 135 x 3, depth = 1
input_shape = (self.IMROWS, self.IMCOLS, self.IMCHANNELS)
discr.add(Conv2D(filters=depth*1, kernel_size=5, strides=2,data_format='channels_last', input_shape=input_shape, padding='same'))
discr.add(LeakyReLU(alpha=0.2))
discr.add(Conv2D(filters=depth*2, kernel_size=5, strides=2, padding='same'))
discr.add(BatchNormalization(momentum=0.9))
discr.add(LeakyReLU(alpha=0.2))
discr.add(Conv2D(filters=depth*4, kernel_size=5, strides=2, padding='same'))
discr.add(BatchNormalization(momentum=0.9))
discr.add(LeakyReLU(alpha=0.2))
discr.add(Conv2D(filters=depth*8, kernel_size=5, strides=2, padding='same'))
discr.add(BatchNormalization(momentum=0.9))
discr.add(LeakyReLU(alpha=0.2))
# Out: 1-dim probability
discr.add(Flatten())
discr.add(Dense(1))
discr.add(Activation('sigmoid'))
print("DISCRIMINATOR NETWORK SHAPE")
discr.summary()
return discr
def build_generator(self):
generator = Sequential()
depth = 816
dim = 2
dropout_rate = 0.5
# In: 100 noise variables
# Out: dim x dim x depth
generator.add(Dense(dim*dim*depth, input_dim=100))
generator.add(Reshape((dim, dim, depth)))
generator.add(BatchNormalization(momentum=0.9))
generator.add(LeakyReLU(alpha=0.2))
# In: dim x dim x depth
# Out: 2*dim x 2*dim x depth/2
generator.add(UpSampling2D())
generator.add(Conv2DTranspose(filters=int(depth/2), kernel_size=5, strides=2, padding='same'))
generator.add(BatchNormalization(momentum=0.9))
generator.add(Dropout(rate=dropout_rate))
generator.add(LeakyReLU(alpha=0.2))
# In: 2*dim x 2*dim x depth/2
# Out: 4*dim x 4*dim x depth/4
generator.add(UpSampling2D())
generator.add(Conv2DTranspose(filters=int(depth/4), kernel_size=5, strides=2, padding='same'))
generator.add(BatchNormalization(momentum=0.9))
generator.add(Dropout(rate=dropout_rate))
generator.add(LeakyReLU(alpha=0.2))
# In: 4*dim x 4*dim x depth/4
# Out: 8*dim x 8*dim x depth/8
generator.add(UpSampling2D())
generator.add(Conv2DTranspose(filters=int(depth/8), kernel_size=5, strides=2, padding='same'))
generator.add(BatchNormalization(momentum=0.9))
generator.add(Dropout(rate=dropout_rate))
generator.add(LeakyReLU(alpha=0.2))
# Out: 128 x 128 x 3 color image
generator.add(Conv2DTranspose(filters=3, kernel_size=5, padding='same'))
generator.add(Activation('tanh'))
print("GENERATOR NETWORK SHAPE")
generator.summary()
return generator
def discriminator_model(self):
if self.DM:
return self.DM
optimizer = RMSprop(lr=0.00005, decay=3e-8)
self.DM = Sequential()
self.DM.add(self.discriminator)
print("trainable discr weights before comp: ", len(self.discriminator.trainable_weights))
self.DM.compile(loss=self.wasserstein_loss, optimizer=optimizer, metrics=['accuracy'])
print("DISCRIMINATOR MODEL: ")
self.DM.summary()
print("trainable discr weights after comp: ", len(self.DM._collected_trainable_weights))
return self.DM
def adversarial_model(self):
if self.AM:
return self.AM
optimizer = RMSprop(lr=0.00005, decay=3e-8)
self.AM = Sequential()
self.AM.add(self.generator)
print("trainable gen weights before comp: ", len(self.generator.trainable_weights))
# Fix discriminator weights in adversarial model
self.discriminator.trainable = False
self.AM.add(self.discriminator)
self.AM.compile(loss=self.wasserstein_loss, optimizer=optimizer, metrics=['accuracy'])
print("ADVERSARIAL MODEL: ")
self.AM.summary()
print("trainable gen weights after comp: ", len(self.AM._collected_trainable_weights))
return self.AM
def wasserstein_loss(self, y_true, y_pred):
return -K.mean(y_true * y_pred)
class SHOES_DCGAN(object):
def __init__(self, nb_samples=None, generator_model=None):
self.img_rows = 128
self.img_cols = 128
self.channels = 3
self.buildModel(generator_model)
self.x_train = self.createTS(nb_samples)
print("Training set size: ", self.x_train.shape)
def buildModel(self, generator_model):
gan = DCGAN(generator_model)
self.discriminator = gan.discriminator_model()
self.adversarial = gan.adversarial_model()
self.generator = gan.generator
def createTS(self, nb_samples):
print("Loading images ... \n")
images = np.zeros((nb_samples, self.img_rows, self.img_cols, self.channels), dtype=np.float32)
input_directory = 'all_athletic'
print("Pre-processing images...")
i = 0
for img in glob.glob("{}/*.jpg".format(input_directory)):
try:
shoe = cv2.imread(img)
shoe = cv2.resize(shoe, (128, 128))
#Normalize image between -1 and 1
channel_0 = (shoe[:,:,0].astype('float32') - 255/2)/(255/2)
channel_1 = (shoe[:,:,1].astype('float32') - 255/2)/(255/2)
channel_2 = (shoe[:,:,2].astype('float32') - 255/2)/(255/2)
norm_shoe = np.stack([channel_0, channel_1, channel_2], axis=-1)
images[i,:,:,:]= norm_shoe
i += 1
if i%500 == 0:
print('Loaded {} images out of {}'.format(i, nb_samples))
except:
print("Passed: ",i)
pass
if i == nb_samples:
break
# print("Image size: ",images[0,:,:,:].shape)
# print("Image example: ", images[0,:10,:10,0])
# print("Rescaled image", images[0,:10,:10,0] * 255/2 + 255/2)
return images
def train(self, train_steps=2000, batch_size=256, n_critic=5, save_interval=0, show_samples=16):
# Transform train_on_batch return value
# to dict expected by on_batch_end callback
# for tensorboard
def named_logs(model, logs):
result = {}
for name, value in zip(model.metrics_names, logs):
result[name] = value
return result
curr_time = time.time()
real_labels = - np.ones((batch_size,1)) # -1
for i in range(train_steps):
# # Tensorboard outputs graphs and other metrics
# tensorboard_discr = TensorBoard(log_dir="logs_and_graphs/{}/logs/discriminator/step_{}".format(curr_time,i),
# histogram_freq=0,
# batch_size=batch_size,
# write_graph=True,
# write_grads=True)
# tensorboard_adver = TensorBoard(log_dir="logs_and_graphs/{}/logs/adversarial/step_{}".format(curr_time, i),
# histogram_freq=0,
# batch_size=batch_size,
# write_graph=True,
# write_grads=True)
# tensorboard_discr.set_model(self.discriminator)
# tensorboard_adver.set_model(self.adversarial)
discriminator_loss = 0
discriminator_acc = 0
# For each training iteration of the adversarial network, traing
# the discriminator for `n_critic` iterations
for _ in range(n_critic):
#Sample real images from training, creating a minibatch
real_images = self.x_train[np.random.randint(0, self.x_train.shape[0], size=batch_size), :, :, :]
# Initialize noise and create fake image from generator
noise = np.random.standard_normal(size=[batch_size, 100]) #Normal noise
fake_images = self.generator.predict(noise)
with tf.device('/device:GPU:0'):
# Train discriminator
real_loss, real_acc = self.discriminator.train_on_batch(real_images, real_labels)
fake_loss, fake_acc = self.discriminator.train_on_batch(fake_images, -real_labels)
# Mean loss between fake and real
discriminator_loss += 0.5 * (real_loss + fake_loss)
discriminator_acc += 0.5 * (real_acc + fake_acc)
# Clip discriminator weights to satisfy Lipschitz constraint
clip_value = 0.01
for layer in self.discriminator.layers:
weights = layer.get_weights()
weights = [np.clip(weight,
-clip_value,
clip_value) for weight in weights]
layer.set_weights(weights)
# Take the average loss over the discriminator iterations
discriminator_loss /= n_critic
discriminator_acc /= n_critic
# Train generator (as discriminator weights are fixed)
noise = np.random.standard_normal(size=[batch_size, 100]) #Normal noise
with tf.device('/device:GPU:0'):
adversarial_loss, adversarial_acc = self.adversarial.train_on_batch(noise, real_labels)
# Graphs discriminator metrics using tensorboard and log to console
# tensorboard_discr.on_epoch_end(i, named_logs(self.discriminator, [discriminator_loss, discriminator_acc]))
# tensorboard_adver.on_epoch_end(i, named_logs(self.adversarial, [adversarial_loss, adversarial_acc]))
log_mesg = "%d: [D loss: %f, acc: %f] [A loss: %f, acc: %f]" % (i, discriminator_loss, discriminator_acc, adversarial_loss, adversarial_acc)
print(log_mesg)
# Plot sample images during training
if save_interval>0:
if (i+1)%save_interval==0:
self.plot_images(fake=True, save2file=True, samples=show_samples, step=i, time = curr_time)
# Saving generator every 500 iterations
if (i+1)%500==0:
modelname = 'models/my_generator_{}.h5'.format(i+1)
print("Saving generator model to disk as", modelname)
self.generator.save(modelname) # creates a HDF5 file 'my_model.h5'
def plot_images(self, save2file=False, fake=True, samples=16, step=0, time=time.time()):
directory = "figures/{}".format(time)
if not os.path.exists(directory):
os.makedirs(directory)
filename = "figures/{}/shoes_true_{}.png".format(time,step)
if fake:
filename = "figures/{}/shoes_fake_{}.png".format(time,step)
# Generate noise and create new fake image
noise = np.random.standard_normal(size=[samples, 100])
images = self.generator.predict(noise)
else:
# Take images from the training set
i = np.random.randint(0, self.x_train.shape[0], samples)
images = self.x_train[i, :, :, :]
plt.figure(figsize=(10,10))
for i in range(images.shape[0]):
plt.subplot(math.sqrt(samples), math.sqrt(samples), i+1)
image = images[i, :, :, :]
image = np.reshape(image, [self.img_rows, self.img_cols, 3])
image = image * 255/2 + 255/2 # Rescale pixel values
plt.imshow(image.astype(np.uint8))
plt.axis('off')
plt.tight_layout()
if save2file:
plt.savefig(filename)
plt.close('all')
else:
plt.clf()
plt.show()
if __name__ == '__main__':
# Shorten training set for troubleshooting
NB_SAMPLES = 10000
TRAINING_STEPS = 30000
BATCH_SIZE = 16
N_CRITIC = 5
SAVE_INTERVAL = 100
SHOW_SAMPLES = 4 # Squares only, e.g. 4 9 16 25 ..
# my_model = load_model('models/my_generator_10000.h5')
Shoes_dcgan = SHOES_DCGAN(nb_samples=NB_SAMPLES)
timer = ElapsedTimer()
Shoes_dcgan.train(TRAINING_STEPS, BATCH_SIZE, N_CRITIC, SAVE_INTERVAL, SHOW_SAMPLES)
timer.elapsed_time()