This repository has been archived by the owner on Feb 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 150
/
data.py
495 lines (441 loc) · 19.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author: Yue Wang
@Contact: [email protected]
@File: data.py
@Time: 2018/10/13 6:21 PM
Modified by
@Author: An Tao, Pengliang Ji, Ziyi Wu
@Contact: [email protected], [email protected], [email protected]
@Time: 2022/7/30 7:49 PM
"""
import os
import sys
import glob
import h5py
import numpy as np
import torch
import json
import cv2
import pickle
from torch.utils.data import Dataset
def download_modelnet40():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget --no-check-certificate %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % ('modelnet40_ply_hdf5_2048', DATA_DIR))
os.system('rm %s' % (zipfile))
def download_shapenetpart():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'shapenet_part_seg_hdf5_data')):
www = 'https://shapenet.cs.stanford.edu/media/shapenet_part_seg_hdf5_data.zip'
zipfile = os.path.basename(www)
os.system('wget --no-check-certificate %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % ('hdf5_data', os.path.join(DATA_DIR, 'shapenet_part_seg_hdf5_data')))
os.system('rm %s' % (zipfile))
def download_S3DIS():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data')):
www = 'https://shapenet.cs.stanford.edu/media/indoor3d_sem_seg_hdf5_data.zip'
zipfile = os.path.basename(www)
os.system('wget %s --no-check-certificate; unzip %s' % (www, zipfile))
os.system('mv %s %s' % ('indoor3d_sem_seg_hdf5_data', DATA_DIR))
os.system('rm %s' % (zipfile))
if not os.path.exists(os.path.join(DATA_DIR, 'Stanford3dDataset_v1.2_Aligned_Version')):
if not os.path.exists(os.path.join(DATA_DIR, 'Stanford3dDataset_v1.2_Aligned_Version.zip')):
print('Please download Stanford3dDataset_v1.2_Aligned_Version.zip \
from https://goo.gl/forms/4SoGp4KtH1jfRqEj2 and place it under data/')
sys.exit(0)
else:
zippath = os.path.join(DATA_DIR, 'Stanford3dDataset_v1.2_Aligned_Version.zip')
os.system('unzip %s' % (zippath))
os.system('mv %s %s' % ('Stanford3dDataset_v1.2_Aligned_Version', DATA_DIR))
os.system('rm %s' % (zippath))
def load_data_cls(partition):
download_modelnet40()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
all_data = []
all_label = []
for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', '*%s*.h5'%partition)):
f = h5py.File(h5_name, 'r+')
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def load_data_partseg(partition):
download_shapenetpart()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
all_data = []
all_label = []
all_seg = []
if partition == 'trainval':
file = glob.glob(os.path.join(DATA_DIR, 'shapenet_part_seg_hdf5_data', '*train*.h5')) \
+ glob.glob(os.path.join(DATA_DIR, 'shapenet_part_seg_hdf5_data', '*val*.h5'))
else:
file = glob.glob(os.path.join(DATA_DIR, 'shapenet_part_seg_hdf5_data', '*%s*.h5'%partition))
for h5_name in file:
f = h5py.File(h5_name, 'r+')
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
seg = f['pid'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_seg.append(seg)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
all_seg = np.concatenate(all_seg, axis=0)
return all_data, all_label, all_seg
def prepare_test_data_semseg():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(os.path.join(DATA_DIR, 'stanford_indoor3d')):
os.system('python prepare_data/collect_indoor3d_data.py')
if not os.path.exists(os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data_test')):
os.system('python prepare_data/gen_indoor3d_h5.py')
def load_data_semseg(partition, test_area):
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
download_S3DIS()
prepare_test_data_semseg()
if partition == 'train':
data_dir = os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data')
else:
data_dir = os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data_test')
with open(os.path.join(data_dir, "all_files.txt")) as f:
all_files = [line.rstrip() for line in f]
with open(os.path.join(data_dir, "room_filelist.txt")) as f:
room_filelist = [line.rstrip() for line in f]
data_batchlist, label_batchlist = [], []
for f in all_files:
file = h5py.File(os.path.join(DATA_DIR, f), 'r+')
data = file["data"][:]
label = file["label"][:]
data_batchlist.append(data)
label_batchlist.append(label)
data_batches = np.concatenate(data_batchlist, 0)
seg_batches = np.concatenate(label_batchlist, 0)
test_area_name = "Area_" + test_area
train_idxs, test_idxs = [], []
for i, room_name in enumerate(room_filelist):
if test_area_name in room_name:
test_idxs.append(i)
else:
train_idxs.append(i)
if partition == 'train':
all_data = data_batches[train_idxs, ...]
all_seg = seg_batches[train_idxs, ...]
else:
all_data = data_batches[test_idxs, ...]
all_seg = seg_batches[test_idxs, ...]
return all_data, all_seg
def load_color_partseg():
colors = []
labels = []
f = open("prepare_data/meta/partseg_colors.txt")
for line in json.load(f):
colors.append(line['color'])
labels.append(line['label'])
partseg_colors = np.array(colors)
partseg_colors = partseg_colors[:, [2, 1, 0]]
partseg_labels = np.array(labels)
font = cv2.FONT_HERSHEY_SIMPLEX
img_size = 1350
img = np.zeros((1350, 1890, 3), dtype="uint8")
cv2.rectangle(img, (0, 0), (1900, 1900), [255, 255, 255], thickness=-1)
column_numbers = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
column_gaps = [320, 320, 300, 300, 285, 285]
color_size = 64
color_index = 0
label_index = 0
row_index = 16
for row in range(0, img_size):
column_index = 32
for column in range(0, img_size):
color = partseg_colors[color_index]
label = partseg_labels[label_index]
length = len(str(label))
cv2.rectangle(img, (column_index, row_index), (column_index + color_size, row_index + color_size),
color=(int(color[0]), int(color[1]), int(color[2])), thickness=-1)
img = cv2.putText(img, label, (column_index + int(color_size * 1.15), row_index + int(color_size / 2)),
font,
0.76, (0, 0, 0), 2)
column_index = column_index + column_gaps[column]
color_index = color_index + 1
label_index = label_index + 1
if color_index >= 50:
cv2.imwrite("prepare_data/meta/partseg_colors.png", img, [cv2.IMWRITE_PNG_COMPRESSION, 0])
return np.array(colors)
elif (column + 1 >= column_numbers[row]):
break
row_index = row_index + int(color_size * 1.3)
if (row_index >= img_size):
break
def load_color_semseg():
colors = []
labels = []
f = open("prepare_data/meta/semseg_colors.txt")
for line in json.load(f):
colors.append(line['color'])
labels.append(line['label'])
semseg_colors = np.array(colors)
semseg_colors = semseg_colors[:, [2, 1, 0]]
partseg_labels = np.array(labels)
font = cv2.FONT_HERSHEY_SIMPLEX
img_size = 1500
img = np.zeros((500, img_size, 3), dtype="uint8")
cv2.rectangle(img, (0, 0), (img_size, 750), [255, 255, 255], thickness=-1)
color_size = 64
color_index = 0
label_index = 0
row_index = 16
for _ in range(0, img_size):
column_index = 32
for _ in range(0, img_size):
color = semseg_colors[color_index]
label = partseg_labels[label_index]
length = len(str(label))
cv2.rectangle(img, (column_index, row_index), (column_index + color_size, row_index + color_size),
color=(int(color[0]), int(color[1]), int(color[2])), thickness=-1)
img = cv2.putText(img, label, (column_index + int(color_size * 1.15), row_index + int(color_size / 2)),
font,
0.7, (0, 0, 0), 2)
column_index = column_index + 200
color_index = color_index + 1
label_index = label_index + 1
if color_index >= 13:
cv2.imwrite("prepare_data/meta/semseg_colors.png", img, [cv2.IMWRITE_PNG_COMPRESSION, 0])
return np.array(colors)
elif (column_index >= 1280):
break
row_index = row_index + int(color_size * 1.3)
if (row_index >= img_size):
break
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
return pointcloud
def rotate_pointcloud(pointcloud):
theta = np.pi*2 * np.random.uniform()
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
pointcloud[:,[0,2]] = pointcloud[:,[0,2]].dot(rotation_matrix) # random rotation (x,z)
return pointcloud
class ModelNet40(Dataset):
def __init__(self, num_points, partition='train'):
self.data, self.label = load_data_cls(partition)
self.num_points = num_points
self.partition = partition
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
label = self.label[item]
if self.partition == 'train':
pointcloud = translate_pointcloud(pointcloud)
np.random.shuffle(pointcloud)
return pointcloud, label
def __len__(self):
return self.data.shape[0]
class ShapeNetPart(Dataset):
def __init__(self, num_points, partition='train', class_choice=None):
self.data, self.label, self.seg = load_data_partseg(partition)
self.cat2id = {'airplane': 0, 'bag': 1, 'cap': 2, 'car': 3, 'chair': 4,
'earphone': 5, 'guitar': 6, 'knife': 7, 'lamp': 8, 'laptop': 9,
'motor': 10, 'mug': 11, 'pistol': 12, 'rocket': 13, 'skateboard': 14, 'table': 15}
self.seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
self.index_start = [0, 4, 6, 8, 12, 16, 19, 22, 24, 28, 30, 36, 38, 41, 44, 47]
self.num_points = num_points
self.partition = partition
self.class_choice = class_choice
self.partseg_colors = load_color_partseg()
if self.class_choice != None:
id_choice = self.cat2id[self.class_choice]
indices = (self.label == id_choice).squeeze()
self.data = self.data[indices]
self.label = self.label[indices]
self.seg = self.seg[indices]
self.seg_num_all = self.seg_num[id_choice]
self.seg_start_index = self.index_start[id_choice]
else:
self.seg_num_all = 50
self.seg_start_index = 0
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
label = self.label[item]
seg = self.seg[item][:self.num_points]
if self.partition == 'trainval':
# pointcloud = translate_pointcloud(pointcloud)
indices = list(range(pointcloud.shape[0]))
np.random.shuffle(indices)
pointcloud = pointcloud[indices]
seg = seg[indices]
return pointcloud, label, seg
def __len__(self):
return self.data.shape[0]
class S3DIS(Dataset):
def __init__(self, num_points=4096, partition='train', test_area='1'):
self.data, self.seg = load_data_semseg(partition, test_area)
self.num_points = num_points
self.partition = partition
self.semseg_colors = load_color_semseg()
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
seg = self.seg[item][:self.num_points]
if self.partition == 'train':
indices = list(range(pointcloud.shape[0]))
np.random.shuffle(indices)
pointcloud = pointcloud[indices]
seg = seg[indices]
seg = torch.LongTensor(seg)
return pointcloud, seg
def __len__(self):
return self.data.shape[0]
class ScanNet(Dataset):
def __init__(self, num_point=8192, partition='train',
data_root='scannet', classes=20, block_size=1.5,
sample_rate=1.0, transform=None, use_rgb=False):
self.partition = partition
self.num_point = num_point
self.block_size = block_size
self.transform = transform
xyz_all = []
label_all = []
if not isinstance(partition, list):
partition = [partition]
for i in partition:
data_file = os.path.join(
data_root, 'scannet_{}_rgb21c_pointid.pickle'.format(i))
file_pickle = open(data_file, 'rb')
_xyz_all = pickle.load(file_pickle)
_label_all = pickle.load(file_pickle)
file_pickle.close()
xyz_all.append(_xyz_all)
label_all.append(_label_all)
xyz_all = np.hstack(xyz_all)
label_all = np.hstack(label_all)
self.label_all = [] # for change 0-20 to 0-19 + 255
self.room_coord_min, self.room_coord_max = [], []
num_point_all = []
for index in range(len(xyz_all)):
xyz, label = xyz_all[index], label_all[index] # xyzrgb, N*6; l, N
coord_min, coord_max = np.amin(
xyz, axis=0)[:3], np.amax(xyz, axis=0)[:3]
self.room_coord_min.append(coord_min)
self.room_coord_max.append(coord_max)
num_point_all.append(label.size)
# we have set all ignore_class to 0
# class 0 is also ignored
# so we set all them as 255
label_new = label - 1
label_new[label == 0] = 255
self.label_all.append(label_new.astype(np.uint8))
sample_prob = num_point_all / np.sum(num_point_all)
num_iter = int(np.sum(num_point_all) * sample_rate / num_point)
room_idxs = []
for index in range(len(xyz_all)):
room_idxs.extend(
[index] * int(round(sample_prob[index] * num_iter)))
self.room_idxs = np.array(room_idxs)
self.xyz_all = xyz_all
# whether load RGB information
self.use_rgb = use_rgb
print("Totally {} samples in {} set.".format(len(self.room_idxs), partition))
def __getitem__(self, idx):
room_idx = self.room_idxs[idx]
points = self.xyz_all[room_idx] # N * 6
if not self.use_rgb:
points = points[:, :3]
labels = self.label_all[room_idx] # N
N_points = points.shape[0]
for i in range(10):
center = points[np.random.choice(N_points)][:3]
block_min = center - [self.block_size /
2.0, self.block_size / 2.0, 0]
block_max = center + [self.block_size /
2.0, self.block_size / 2.0, 0]
block_min[2] = self.room_coord_min[room_idx][2]
block_max[2] = self.room_coord_max[room_idx][2]
point_idxs = np.where((points[:, 0] >= block_min[0]) &
(points[:, 0] <= block_max[0]) &
(points[:, 1] >= block_min[1]) &
(points[:, 1] <= block_max[1]))[0]
if point_idxs.size == 0:
continue
vidx = np.ceil((points[point_idxs, :3] - block_min) /
(block_max - block_min) * [31.0, 31.0, 62.0])
vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 +
vidx[:, 1] * 62.0 + vidx[:, 2])
if ((labels[point_idxs] != 255).sum() / point_idxs.size >= 0.7) and (vidx.size/31.0/31.0/62.0 >= 0.02):
break
if point_idxs.size >= self.num_point:
selected_point_idxs = np.random.choice(
point_idxs, self.num_point, replace=False)
else:
selected_point_idxs = np.random.choice(
point_idxs, self.num_point, replace=True)
# normalize
selected_points = points[selected_point_idxs, :] # num_point * 3/6
num_feats = 9 if self.use_rgb else 6
current_points = np.zeros(
(self.num_point, num_feats)) # num_point * 6/9
current_points[:, -3] = selected_points[:, 0] / \
self.room_coord_max[room_idx][0]
current_points[:, -2] = selected_points[:, 1] / \
self.room_coord_max[room_idx][1]
current_points[:, -1] = selected_points[:, 2] / \
self.room_coord_max[room_idx][2]
selected_points[:, 0] = selected_points[:, 0] - center[0]
selected_points[:, 1] = selected_points[:, 1] - center[1]
current_points[:, 0:3] = selected_points[:, 0:3]
if self.use_rgb:
current_points[:, 3:6] = selected_points[:, 3:6] / 255.
current_labels = labels[selected_point_idxs]
if self.transform is not None:
current_points, current_labels = self.transform(
current_points, current_labels)
return current_points, current_labels
def __len__(self):
return len(self.room_idxs)
if __name__ == '__main__':
train = ModelNet40(1024)
test = ModelNet40(1024, 'test')
data, label = train[0]
print(data.shape)
print(label.shape)
trainval = ShapeNetPart(2048, 'trainval')
test = ShapeNetPart(2048, 'test')
data, label, seg = trainval[0]
print(data.shape)
print(label.shape)
print(seg.shape)
train = S3DIS(4096)
test = S3DIS(4096, 'test')
data, seg = train[0]
print(data.shape)
print(seg.shape)
train = ScanNet(8192)
test = ScanNet(8192, 'test')
data, seg = train[0]
print(data.shape)
print(seg.shape)