-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathServerModelsICLR.py
110 lines (87 loc) · 3.58 KB
/
ServerModelsICLR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import sys, os, time
import numpy as np
import cntk
import fiona
import fiona.transform
import shapely
import shapely.geometry
import rasterio
import rasterio.mask
cnn_model_file = "data/cnn_60.model" #/mnt/blobfuse/train-output/ForKolyaPaper-train_Chesapeake2014_region_patch_LC4_sp2_NLCD-0.2-40/cnn_60.model
def load_cnn_model(fn, gpu_id=0):
cntk.try_set_default_device(cntk.gpu(gpu_id))
cntk.use_default_device()
return cntk.load_model(fn)
def softmax(output):
output_max = np.max(output, axis=3, keepdims=True)
exps = np.exp(output-output_max)
exp_sums = np.sum(exps, axis=3, keepdims=True)
return exps/exp_sums
def run(naip, fn, extent, buffer):
return run_cnn(naip)
def run_cnn(naip, batch_size=16):
naip = naip/255.0
#landsat = landsat/65536.0
naip = np.swapaxes(naip, 0, 1)
naip = np.swapaxes(naip, 0, 2)
#landsat = np.swapaxes(landsat, 0, 1)
#landsat = np.swapaxes(landsat, 0, 2)
#blg = np.swapaxes(blg, 0, 1)
#blg = np.swapaxes(blg, 0, 2)
x1, x2, x3 = naip.shape
#y1, y2, y3 = landsat.shape
#z1, z2, z3 = blg.shape
#s2 = min(x2, y2, z2)
#s3 = min(x3, y3, z3)
s2 = x2
s3 = x3
#tile = np.concatenate((naip[:, :s2, :s3], landsat[:, :s2, :s3], blg[:, :s2, :s3]),
# axis=0).astype(np.float32)
#tile = tile[:, 21:-21, 21:-21]
tile = naip[:, :s2, :s3]
height = tile.shape[1]
width = tile.shape[2]
(_, model_width, model_height) = model.arguments[0].shape
focus_rad = 32
stride_x = model_width - focus_rad*2
stride_y = model_height - focus_rad*2
output = np.zeros((height, width, 5), dtype=np.float32)
counts = np.zeros((height, width), dtype=np.float32) + 0.0001
kernel = np.ones((model_height, model_width), dtype=np.float32) * 0.01
kernel[10:-10, 10:-10] = 1
kernel[focus_rad:focus_rad+stride_y, focus_rad:focus_rad+stride_x] = 5
batch = []
batch_indices = []
batch_count = 0
for y_index in (list(range(0, height - model_height, stride_y)) + [height - model_height,]):
for x_index in (list(range(0, width - model_width, stride_x)) + [width - model_width,]):
batch_indices.append((y_index, x_index))
batch.append(tile[:, y_index:y_index+model_height, x_index:x_index+model_width])
batch_count+=1
if batch_count == batch_size:
# run batch
model_output = model.eval(np.array(batch))
model_output = np.swapaxes(model_output,1,3)
model_output = np.swapaxes(model_output,1,2)
model_output = softmax(model_output)
for i, (y, x) in enumerate(batch_indices):
output[y:y+model_height, x:x+model_width] += model_output[i] * kernel[..., np.newaxis]
counts[y:y+model_height, x:x+model_width] += kernel
# reset batch
batch = []
batch_indices = []
batch_count = 0
if batch_count > 0:
model_output = model.eval(np.array(batch))
model_output = np.swapaxes(model_output,1,3)
model_output = np.swapaxes(model_output,1,2)
model_output = softmax(model_output)
for i, (y, x) in enumerate(batch_indices):
output[y:y+model_height, x:x+model_width] += model_output[i] * kernel[..., np.newaxis]
counts[y:y+model_height, x:x+model_width] += kernel
out = output/counts[..., np.newaxis]
#out[:, :, 4] += out[:, :, 5] + out[:, :, 6]
#out[:, :, 5:] = 0
return out[..., 1:], cnn_model_file
model = load_cnn_model(cnn_model_file, 0)
print("CNN loaded")