-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainDet.py
70 lines (56 loc) · 1.92 KB
/
trainDet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import sys
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import (
DefaultTrainer, default_argument_parser, default_setup, launch
)
from detectron2.evaluation import (COCOEvaluator, PascalVOCDetectionEvaluator,
CityscapesInstanceEvaluator)
'''
Modified https://github.com/facebookresearch/moco/tree/main/detection
Available datasets:
voc_2012_trainval, voc_2007_trainval, voc_2007_test
'''
class TrainEngine(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
if "coco" in dataset_name:
return COCOEvaluator(dataset_name, cfg, True, output_folder)
elif "voc" in dataset_name:
return PascalVOCDetectionEvaluator(dataset_name)
elif "city" in dataset_name:
return CityscapesInstanceEvaluator(dataset_name)
def setup(args):
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
Model = TrainEngine.build_model(cfg)
DetectionCheckpointer(Model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
Res = TrainEngine.test(cfg, Model)
return Res
Trainer = TrainEngine(cfg)
Trainer.resume_or_load(resume=args.resume)
return Trainer.train()
if __name__ == "__main__":
# sys.argv[1]
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)