From 27a16d069fe56b49acb7964f265bff6cdd796846 Mon Sep 17 00:00:00 2001 From: Steven Rieder Date: Thu, 21 Nov 2024 11:49:16 +0100 Subject: [PATCH] style improvements, mostly --- src/sunbather/__init__.py | 41 +++++++------- src/sunbather/convergeT_parker.py | 90 +++++++++++++++++-------------- src/sunbather/install_cloudy.py | 24 ++++++--- src/sunbather/solveT.py | 79 +++++++++++++++++++-------- 4 files changed, 146 insertions(+), 88 deletions(-) diff --git a/src/sunbather/__init__.py b/src/sunbather/__init__.py index b05c199..4542efc 100644 --- a/src/sunbather/__init__.py +++ b/src/sunbather/__init__.py @@ -6,45 +6,46 @@ import shutil import sunbather.tools +from sunbather.install_cloudy import GetCloudy + def check_cloudy(): """ Checks if Cloudy executable exists, and if not, prompts to download and build it. """ try: - CLOUDYVERSION = os.environ["CLOUDY_VERSION"] + cloudyversion = os.environ["CLOUDY_VERSION"] except KeyError: - CLOUDYVERSION = "23.01" - SUNBATHERPATH = os.path.dirname( + cloudyversion = "23.01" + sunbatherpath = os.path.dirname( os.path.abspath(__file__) ) # the absolute path where this code lives try: # the path where Cloudy is installed - CLOUDYPATH = os.environ["CLOUDY_PATH"] - except KeyError as exc: - CLOUDYPATH = f"{SUNBATHERPATH}/cloudy/c{CLOUDYVERSION}" - if not os.path.exists(f"{CLOUDYPATH}/source/cloudy.exe"): + cloudypath = os.environ["cloudy_path"] + except KeyError: + cloudypath = f"{sunbatherpath}/cloudy/c{cloudyversion}" + if not os.path.exists(f"{cloudypath}/source/cloudy.exe"): q = input( f"Cloudy not found and CLOUDY_PATH is not set. " - f"Do you want to install Cloudy {CLOUDYVERSION} now in the Sunbather path? " + f"Do you want to install Cloudy {cloudyversion} now in the sunbather path? " f"(y/n) " ) while q.lower() not in ["y", "n"]: q = input("Please enter 'y' or 'n'") if q == "n": raise KeyError( - "Cloudy not found, and the environment variable 'CLOUDY_PATH' is not set. " - "Please set this variable in your .bashrc/.zshrc file " + "Cloudy not found, and the environment variable 'CLOUDY_PATH' is not " + "set. Please set this variable in your .bashrc/.zshrc file " "to the path where the Cloudy installation is located. " "Do not point it to the /source/ subfolder, but to the main folder." - ) from exc - from sunbather.install_cloudy import GetCloudy - INSTALLER = GetCloudy(version=CLOUDYVERSION) - INSTALLER.download() - INSTALLER.extract() - INSTALLER.compile() - INSTALLER.test() - INSTALLER.copy_data() + ) + installer = GetCloudy(version=cloudyversion) + installer.download() + installer.extract() + installer.compile() + installer.test() + installer.copy_data() def make_workingdir(): @@ -64,7 +65,7 @@ def make_workingdir(): sunbatherpath = f"{pathlib.Path(__file__).parent.resolve()}" shutil.copytree( - sunbatherpath + "/data/workingdir", + f"{sunbatherpath}/data/workingdir", workingdir, ) @@ -75,3 +76,5 @@ def firstrun(): """ check_cloudy() make_workingdir() + + print("Sunbather is ready to go!") diff --git a/src/sunbather/convergeT_parker.py b/src/sunbather/convergeT_parker.py index 3516f05..f30fc8c 100644 --- a/src/sunbather/convergeT_parker.py +++ b/src/sunbather/convergeT_parker.py @@ -1,3 +1,7 @@ +""" +ConvergeT_parker module of sunbather +""" +import sys import multiprocessing from shutil import copyfile import time @@ -474,42 +478,44 @@ def run_g( Maximum number of iterations, by default 16. """ - p = multiprocessing.Pool(cores) - - pars = [] - for Mdot in np.arange( - float(Mdot_l), float(Mdot_u) + 1e-6, float(Mdot_s) - ): # 1e-6 so that upper bound is inclusive - for T in np.arange(int(T_l), int(T_u) + 1e-6, int(T_s)).astype(int): - pars.append( - ( - plname, - Mdot, - T, - 1, - fc, - workingdir, - SEDname, - overwrite, - startT, - pdir, - zdict, - altmax, - save_sp, - constantT, - maxit, + with multiprocessing.Pool(processes=cores) as pool: + pars = [] + for Mdot in np.arange( + float(Mdot_l), float(Mdot_u) + 1e-6, float(Mdot_s) + ): # 1e-6 so that upper bound is inclusive + for T in np.arange(int(T_l), int(T_u) + 1e-6, int(T_s)).astype(int): + pars.append( + ( + plname, + Mdot, + T, + 1, + fc, + workingdir, + SEDname, + overwrite, + startT, + pdir, + zdict, + altmax, + save_sp, + constantT, + maxit, + ) ) - ) - - p.starmap(catch_errors_run_s, pars) - p.close() - p.join() + pool.starmap(catch_errors_run_s, pars) + pool.close() + pool.join() -def main(): +def new_argument_parser(): """ - Main function + Creates a new argument parser. """ + parser = argparse.ArgumentParser( + description="Runs the temperature convergence for 1D Parker profile(s).", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, + ) class OneOrThreeAction(argparse.Action): """ @@ -536,13 +542,6 @@ def __call__(self, parser, namespace, values, option_string=None): key, val = value.split("=") getattr(namespace, self.dest)[key] = float(val) - t0 = time.time() - - parser = argparse.ArgumentParser( - description="Runs the temperature convergence for 1D Parker profile(s).", - formatter_class=argparse.ArgumentDefaultsHelpFormatter, - ) - parser.add_argument( "-plname", required=True, help="planet name (must be in planets.txt)" ) @@ -691,7 +690,18 @@ def __call__(self, parser, namespace, values, option_string=None): ), ) - args = parser.parse_args() + return parser + + +def main(*args, **kwargs): + """ + Main function + """ + + t0 = time.time() + + parser = new_argument_parser() + args = parser.parse_args(*args, **kwargs) zdict = tools.get_zdict(z=args.z, zelem=args.zelem) @@ -813,4 +823,4 @@ def __call__(self, parser, namespace, values, option_string=None): if __name__ == "__main__": - main() + main(sys.argv[1:]) diff --git a/src/sunbather/install_cloudy.py b/src/sunbather/install_cloudy.py index 035eeb2..d80e951 100644 --- a/src/sunbather/install_cloudy.py +++ b/src/sunbather/install_cloudy.py @@ -1,3 +1,6 @@ +""" +Functions to download and compile Cloudy +""" import os import pathlib from urllib.error import HTTPError @@ -37,7 +40,7 @@ def download(self): with urllib.request.urlopen(f"{self.url}{self.filename}") as g: with open(self.filename, "b+w") as f: f.write(g.read()) - except HTTPError as exc: + except HTTPError: print(f"Could not download Cloudy from {self.url}{self.filename}...") return # Go to the v23 download page and download the "c23.01.tar.gz" file @@ -56,26 +59,35 @@ def compile(self): Compiles Cloudy. """ os.chdir(f"{self.cloudypath}/c{self.version}/source/") - subprocess.Popen( + with subprocess.Popen( [ "make", ] - ).wait() + ) as p: + p.wait() def test(self): - # Quickly test the Cloudy installation: in the source folder, run ./cloudy.exe, type "test" and hit return twice. It should print "Cloudy exited OK" at the end. + """ + Quickly test the Cloudy installation: in the source folder, run + ./cloudy.exe, type "test" and hit return twice. It should print "Cloudy + exited OK" at the end. + """ os.chdir(f"{self.cloudypath}/c{self.version}/source/") print( 'Type "test" and hit return twice. ' 'It should print "Cloudy exited OK" at the end.' ) - subprocess.Popen( + with subprocess.Popen( [ "./cloudy.exe", ] - ).wait() + ) as p: + p.wait() def copy_data(self): + """ + Copy the stellar SEDs to the Cloudy data folder + """ shutil.copytree( f"{self.sunbatherpath}/data/stellar_SEDs/", f"{self.cloudypath}/c{self.version}/data/SED/", diff --git a/src/sunbather/solveT.py b/src/sunbather/solveT.py index 7cd94da..fd410f8 100644 --- a/src/sunbather/solveT.py +++ b/src/sunbather/solveT.py @@ -127,7 +127,8 @@ def simtogrid(sim, grid): ) # minus sign to get expansion cooling rates as positive values adv = calc_advection(grid, rho, v, Te, mu) - # apply very slight smoothing because the Cloudy .ovr quantities have mediocre reported numerical precision + # apply very slight smoothing because the Cloudy .ovr quantities have + # mediocre reported numerical precision expcool = tools.smooth_gaus_savgol(expcool, fraction=0.01) adv = tools.smooth_gaus_savgol(adv, fraction=0.01) @@ -268,7 +269,10 @@ def last_false_index(arr): ) # boolean array where radiative heating dominates AND radiative cooling dominates highest_r_above_which_no_bothrad_dominate = last_true_index(bothrad_dominate) advheat_dominates[:highest_r_above_which_no_bothrad_dominate] = ( - False # now the boolean array stores where advection heating dominates AND where there is no point at higher altitudes that is rad. heat and rad. cool dominated + False + # now the boolean array stores where advection heating dominates AND + # where there is no point at higher altitudes that is rad. heat and + # rad. cool dominated ) if ( True in advheat_dominates @@ -281,21 +285,28 @@ def last_false_index(arr): ) # boolean array where advection heating is relatively unimportant advunimploc = last_true_index( advheat_unimportant[:advdomloc] - ) # first point at lower altitude where advection becomes unimportant (if no point exists, it will become advdomloc) - # then walk to higher altitude again to find converged point. We are more lax with H/C ratio if advection dominates more. + ) + # first point at lower altitude where advection becomes unimportant (if + # no point exists, it will become advdomloc) then walk to higher + # altitude again to find converged point. We are more lax with H/C + # ratio if advection dominates more. almost_converged = np.abs(HCratio[advunimploc:]) < 1.3 * np.clip( (advheat[advunimploc:] / radheat[advunimploc:]) ** (2.0 / 3.0), 1, 10 ) if True in almost_converged: # otherwise it stays default value adv_cloc = advunimploc + first_true_index(almost_converged) - # check for regime where radiative cooling is weak. Usually this means that expansion cooling dominates, but advection cooling can contribute in some cases + # check for regime where radiative cooling is weak. Usually this means that + # expansion cooling dominates, but advection cooling can contribute in some + # cases exp_cloc = len(HCratio) # start by setting a 'too high' value expcool_dominates = radcool / (radcool + expcool + advcool) < 0.2 - if True and False in expcool_dominates: # FIXME True in expcool_dominates and False in expcool_dominates?? -SR + if True in expcool_dominates and False in expcool_dominates: exp_cloc = last_false_index( expcool_dominates - ) # this way of evaluating it guarantees that all entries after this one are True + ) + # this way of evaluating it guarantees that all entries after this one + # are True elif False not in expcool_dominates: # if they are all True exp_cloc = 0 @@ -352,9 +363,12 @@ def relaxTstruc(grid, path, itno, Te, HCratio): if itno >= 4: # check for fluctuations. If so, we decrease the deltaT factor prev_prevTe = iterations_file["Te" + str(itno - 2)] previous_ratio = Te / prev_prevTe # compare itno-2 to itno-1 + + # compare itno-1 to the current itno (because of smoothing this ratio + # is not exactly the same as fT) this_ratio = ( newTe_relax / Te - ) # compare itno-1 to the current itno (because of smoothing this ratio is not exactly the same as fT) + ) fl = ((previous_ratio < 1) & (this_ratio > 1)) | ( (previous_ratio > 1) & (this_ratio < 1) ) # boolean indicating where temperature fluctuates @@ -402,7 +416,8 @@ def constructTstruc(grid, newTe_relax, cloc, v, rho, mu, radheat, radcool): radheat : numpy.ndarray Radiative heating rate in units of erg s-1 cm-3, at the 'grid' radii. radcool : numpy.ndarray - Radiative cooling rate in units of erg s-1 cm-3, as positive values, at the 'grid' radii. + Radiative cooling rate in units of erg s-1 cm-3, as positive values, at + the 'grid' radii. Returns ------- @@ -429,17 +444,22 @@ def one_cell_HCratio(T, index): / (grid[index] - grid[index - 1]) ) - # instead of completely keeping the radiative heating and cooling rate the same while we are solving for T in this bin, - # we adjust it a little bit. This helps to prevent that the temperature changes are too drastic and go into a regime where - # radiation becomes important again. We guess a quadratic dependence of the rates on T. This is not the true dependence, - # but it does reduce to the original rate when T -> original T, which is important. + # instead of completely keeping the radiative heating and cooling rate + # the same while we are solving for T in this bin, we adjust it a + # little bit. This helps to prevent that the temperature changes are + # too drastic and go into a regime where radiation becomes important + # again. We guess a quadratic dependence of the rates on T. This is not + # the true dependence, but it does reduce to the original rate when T + # -> original T, which is important. guess_radheat = radheat[index] * (newTe_construct[index] / T) ** 2 guess_radcool = radcool[index] * (T / newTe_construct[index]) ** 2 totheat = guess_radheat + max(adv, 0) # if adv is negative we don't add it here + # if adv is positive we don't add it here, we subtract expcool and adv + # because they are negative totcool = ( guess_radcool - expcool - min(adv, 0) - ) # if adv is positive we don't add it here, we subtract expcool and adv because they are negative + ) HCratio = max(totheat, totcool) / min( totheat, totcool @@ -460,7 +480,8 @@ def one_cell_HCratio(T, index): smooth_newTe_construct = np.clip( smooth_newTe_construct, 1e1, 1e6 ) # after smoothing we might have ended up below 10K - # now combine the smoothed profile around 'cloc', and the non-smoothed version away from 'cloc' + # now combine the smoothed profile around 'cloc', and the non-smoothed + # version away from 'cloc' smooth_weight = np.zeros(len(grid)) smooth_weight += sps.norm.pdf(range(len(grid)), cloc, int(len(grid) / 30)) smooth_weight /= np.max(smooth_weight) # normalize @@ -522,7 +543,8 @@ def make_rates_plot( fc : numeric Convergence threshold for H/C. newTe_construct : numpy.ndarray, optional - Proposed temperature profile based on the construction algorithm, by default None + Proposed temperature profile based on the construction algorithm, by + default None cloc : int, optional Index of the grid from where the construction algorithm was ran, by default None title : str, optional @@ -794,7 +816,8 @@ def run_loop(path, itno, fc, save_sp=None, maxit=16): tools.run_Cloudy("iteration1", folder=path) itno += 1 - # now, we have ran our iteration1 and can start the iterative scheme to find a new profile: + # now, we have ran our iteration1 and can start the iterative scheme to + # find a new profile: while itno <= maxit: prev_sim = tools.Sim( path + f"iteration{itno-1}" @@ -802,7 +825,8 @@ def run_loop(path, itno, fc, save_sp=None, maxit=16): Rp = prev_sim.p.R # planet radius in cm altmax = prev_sim.altmax # maximum radius of the simulation in units of Rp - # make logspaced grid to use throughout the code, interpolate all quantities onto this grid. + # make logspaced grid to use throughout the code, interpolate all + # quantities onto this grid. rgrid = np.logspace(np.log10(Rp), np.log10(altmax * Rp), num=1000) Te, mu, rho, v, radheat, radcool, expcool, advheat, advcool = simtogrid( @@ -844,7 +868,8 @@ def run_loop(path, itno, fc, save_sp=None, maxit=16): cloc=cloc, ) - # get the final new temperature profile, based on whether the construction algorithm was applied + # get the final new temperature profile, based on whether the + # construction algorithm was applied if newTe_construct is None: newTe = newTe_relax else: @@ -860,12 +885,16 @@ def run_loop(path, itno, fc, save_sp=None, maxit=16): # now we check if the profile is converged. if ( itno <= 2 - ): # always update the Te profile at least once - in case we start from a 'close' Parker wind profile that immediately satisfies fc + ): + # always update the Te profile at least once - in case we start + # from a 'close' Parker wind profile that immediately satisfies fc converged = False else: prevTe = iterations_file[ "Te" + str(itno - 1) - ].values # read out from file instead of Sim because the file has higher resolution + ].values + # read out from file instead of Sim because the file has higher + # resolution converged = check_converged( fc, HCratio, newTe, prevTe, linthresh=50.0 ) # check convergence criteria @@ -883,7 +912,9 @@ def run_loop(path, itno, fc, save_sp=None, maxit=16): advheat, advcool, ) - # calculate these terms for the output converged.txt file - for fast access of some key parameters without loading in the Cloudy sim. + # calculate these terms for the output converged.txt file - for + # fast access of some key parameters without loading in the Cloudy + # sim. np.savetxt( path + "converged.txt", np.column_stack( @@ -916,7 +947,9 @@ def run_loop(path, itno, fc, save_sp=None, maxit=16): tools.run_Cloudy("converged", folder=path) tools.Sim( path + "converged" - ) # read in the simulation, so we open the .en file (if it exists) and hence compress its size (see tools.process_energies()) + ) + # read in the simulation, so we open the .en file (if it exists) + # and hence compress its size (see tools.process_energies()) clean_converged_folder(path) # remove all non-converged files print(f"Temperature profile converged: {path}")