forked from javirk/Pytorch-Ray-Tracer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
34 lines (27 loc) · 1.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from libs.sphere import Sphere
from libs.world import World
from libs.camera import Camera
from libs.material import Material
from libs.utils import read_config
if __name__ == '__main__':
dev = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
config = read_config('config.yml')
material_ground = Material('lambertian', torch.tensor((0.5, 0.5, 0.5), device=dev))
material_center = Material('lambertian', torch.tensor((0.1, 0.2, 0.5), device=dev))
material_left = Material('lambertian', torch.tensor((224, 90, 90), device=dev))
material_right = Material('metal', torch.tensor((250, 248, 202), device=dev))
# World
world = World()
world.add(Sphere(torch.tensor((0.0, -1000., 0)), 1000., material_ground))
world.add(Sphere(torch.tensor((0.0, 1.0, 0.)), 1, material_center))
# world.add(Sphere(torch.tensor((-0.25, 0.5, 1.5)), 0.5, material_left))
# world.add(Sphere(torch.tensor((-0.5, 0.5, -1.5)), 0.5, material_right))
lookfrom = torch.tensor((-2, 1, 1.))
lookat = torch.tensor((0., 0., 0.))
vup = torch.tensor((0., 1., 0.))
cam = Camera(lookfrom, lookat, vup, config['fov'], config['image_width'], config['aspect_ratio'], config['render_depth'])
with torch.no_grad():
image = cam.render(world, antialiasing=config['antialiasing'])
image.show(flip=True)
image.save('output/test_1.png', flip=True)