forked from alno/kaggle-outbrain-click-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn-model.cpp
293 lines (210 loc) · 9.45 KB
/
nn-model.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#include "nn-model.h"
#include "util/model-helpers.h"
#include "util/nn-helpers.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <algorithm>
constexpr uint n_features = 1 << ffm_hash_bits;
constexpr uint l0_output_size = aligned_float_array_size(96);
constexpr uint l1_output_size = aligned_float_array_size(64);
constexpr uint l2_output_size = aligned_float_array_size(48);
constexpr uint l1_layer_size = l0_output_size * (l1_output_size - 1);
constexpr uint l2_layer_size = l1_output_size * (l2_output_size - 1);
constexpr uint l3_layer_size = l2_output_size;
uint rehash(uint feature_index) {
return feature_index & ffm_hash_mask;
}
class state_buffer {
public:
float * l0_output;
float * l0_output_grad;
float * l0_dropout_mask;
float * l1_output;
float * l1_output_grad;
float * l1_dropout_mask;
float * l2_output;
float * l2_output_grad;
float * l2_dropout_mask;
std::default_random_engine gen;
public:
state_buffer() {
l0_output = malloc_aligned<float>(l0_output_size);
l0_output_grad = malloc_aligned<float>(l0_output_size);
l0_dropout_mask = malloc_aligned<float>(l0_output_size);
l1_output = malloc_aligned<float>(l1_output_size);
l1_output_grad = malloc_aligned<float>(l1_output_size);
l1_dropout_mask = malloc_aligned<float>(l1_output_size);
l2_output = malloc_aligned<float>(l2_output_size);
l2_output_grad = malloc_aligned<float>(l2_output_size);
l2_dropout_mask = malloc_aligned<float>(l2_output_size);
}
~state_buffer() {
free(l0_output);
free(l0_output_grad);
free(l0_dropout_mask);
free(l1_output);
free(l1_output_grad);
free(l1_dropout_mask);
free(l2_output);
free(l2_output_grad);
free(l2_dropout_mask);
}
};
static thread_local state_buffer local_state_buffer;
nn_model::nn_model(int seed, float eta, float lambda) {
this->eta = eta;
this->lambda = lambda;
std::default_random_engine rnd(seed);
lin_w = malloc_aligned<float>(n_features * l0_output_size);
lin_wg = malloc_aligned<float>(n_features * l0_output_size);
l1_w = malloc_aligned<float>(l1_layer_size);
l1_wg = malloc_aligned<float>(l1_layer_size);
l2_w = malloc_aligned<float>(l2_layer_size);
l2_wg = malloc_aligned<float>(l2_layer_size);
l3_w = malloc_aligned<float>(l3_layer_size);
l3_wg = malloc_aligned<float>(l3_layer_size);
fill_with_rand(lin_w, n_features * l0_output_size, std::uniform_real_distribution<float>(-0.1, 0.1), rnd);
fill_with_ones(lin_wg, n_features * l0_output_size);
fill_with_rand(l1_w, l1_layer_size, std::normal_distribution<float>(0, 2/sqrt(l0_output_size)), rnd);
fill_with_ones(l1_wg, l1_layer_size);
fill_with_rand(l2_w, l2_layer_size, std::normal_distribution<float>(0, 2/sqrt(l1_output_size)), rnd);
fill_with_ones(l2_wg, l2_layer_size);
fill_with_rand(l3_w, l3_layer_size, std::normal_distribution<float>(0, 2/sqrt(l2_output_size)), rnd);
fill_with_ones(l3_wg, l3_layer_size);
}
nn_model::~nn_model() {
free(lin_w);
free(lin_wg);
free(l1_w);
free(l1_wg);
free(l2_w);
free(l2_wg);
}
uint nn_model::get_dropout_mask_size(const ffm_feature * start, const ffm_feature * end) {
return 0;
}
float nn_model::predict(const ffm_feature * start, const ffm_feature * end, float norm, uint64_t * _dropout_mask, float dropout_mult) {
float linear_norm = end - start;
state_buffer & buf = local_state_buffer;
float * l0_output = buf.l0_output;
float * l0_dropout_mask = buf.l0_dropout_mask;
float * l1_output = buf.l1_output;
float * l1_dropout_mask = buf.l1_dropout_mask;
float * l2_output = buf.l2_output;
float * l2_dropout_mask = buf.l2_dropout_mask;
auto & gen = buf.gen;
std::uniform_real_distribution<float> dropout_distr(0, 1);
if (dropout_mult > 1) { // Apply dropout only in train
float l0_dropout_prob = 0;//0.02;
float l1_dropout_prob = 0;//0.02;
float l2_dropout_prob = 0;//0.02;
float l0_dropout_scale = 1 / (1 - l0_dropout_prob);
float l1_dropout_scale = 1 / (1 - l1_dropout_prob);
float l2_dropout_scale = 1 / (1 - l2_dropout_prob);
// Prepare dropout masks
l0_dropout_mask[0] = 1.0; // No dropout on bias
for (uint j = 1; j < l0_output_size; ++ j)
l0_dropout_mask[j] = (dropout_distr(gen) >= l0_dropout_prob) * l0_dropout_scale;
l1_dropout_mask[0] = 1.0; // No dropout on bias
for (uint j = 1; j < l1_output_size; ++ j)
l1_dropout_mask[j] = (dropout_distr(gen) >= l1_dropout_prob) * l1_dropout_scale;
l2_dropout_mask[0] = 1.0; // No dropout on bias
for (uint j = 1; j < l2_output_size; ++ j)
l2_dropout_mask[j] = (dropout_distr(gen) >= l2_dropout_prob) * l2_dropout_scale;
} else {
fill_with_ones(l0_dropout_mask, l0_output_size);
fill_with_ones(l1_dropout_mask, l1_output_size);
fill_with_ones(l2_dropout_mask, l2_output_size);
}
// Compute activations
fill_with_zero(l0_output, l0_output_size);
fill_with_zero(l1_output, l1_output_size);
fill_with_zero(l2_output, l2_output_size);
for (const ffm_feature * fa = start; fa != end; ++ fa) {
uint index = rehash(fa->index);
float value = fa->value;
float * wl = lin_w + index * l0_output_size;
__m256 ymm_val = _mm256_set1_ps(value / linear_norm);
for(ffm_uint d = 0; d < l0_output_size; d += 8) {
_mm256_store_ps(l0_output + d, _mm256_load_ps(l0_output + d) + _mm256_load_ps(wl + d) * ymm_val);
}
}
l0_output[0] = 1.0; // Layer 0 bias, here we rewritre some computation results, but who cares
l1_output[0] = 1.0; // Layer 1 bias
l2_output[0] = 1.0; // Layer 2 bias
// Layer 0 relu
for (uint j = 1; j < l0_output_size; ++ j)
l0_output[j] = relu(l0_output[j]) * l0_dropout_mask[j];
// Layer 1 forward pass
for (uint j = 1; j < l1_output_size; ++ j)
l1_output[j] = relu(forward_pass(l0_output_size, l0_output, l1_w + (j - 1) * l0_output_size)) * l1_dropout_mask[j];
// Layer 2 forward pass
for (uint j = 1; j < l2_output_size; ++ j)
l2_output[j] = relu(forward_pass(l1_output_size, l1_output, l2_w + (j - 1) * l1_output_size)) * l2_dropout_mask[j];
// Layer 3 forward pass
return forward_pass(l2_output_size, l2_output, l3_w);
}
void nn_model::update(const ffm_feature * start, const ffm_feature * end, float norm, float kappa, uint64_t * _dropout_mask, float _dropout_mult) {
float linear_norm = end - start;
state_buffer & buf = local_state_buffer;
float * l0_output = buf.l0_output;
float * l0_output_grad = buf.l0_output_grad;
float * l0_dropout_mask = buf.l0_dropout_mask;
float * l1_output = buf.l1_output;
float * l1_output_grad = buf.l1_output_grad;
float * l1_dropout_mask = buf.l1_dropout_mask;
float * l2_output = buf.l2_output;
float * l2_output_grad = buf.l2_output_grad;
float * l2_dropout_mask = buf.l2_dropout_mask;
fill_with_zero(l0_output_grad, l0_output_size);
fill_with_zero(l1_output_grad, l1_output_size);
fill_with_zero(l2_output_grad, l2_output_size);
backward_pass(l2_output_size, l2_output, l2_output_grad, l3_w, l3_wg, kappa, eta, lambda);
// Backprop layer 2
for (uint j = 1, ofs = 0; j < l2_output_size; ++ j, ofs += l1_output_size) {
float l2_grad = l2_output_grad[j] * l2_dropout_mask[j];
if (l2_output[j] <= 0) // Relu activation: grad in negative part is zero
l2_grad = 0;
backward_pass(l1_output_size, l1_output, l1_output_grad, l2_w + ofs, l2_wg + ofs, l2_grad, eta, lambda);
}
// Backprop layer 1
for (uint j = 1, ofs = 0; j < l1_output_size; ++ j, ofs += l0_output_size) {
float l1_grad = l1_output_grad[j] * l1_dropout_mask[j];
if (l1_output[j] <= 0) // Relu activation: grad in negative part is zero
l1_grad = 0;
backward_pass(l0_output_size, l0_output, l0_output_grad, l1_w + ofs, l1_wg + ofs, l1_grad, eta, lambda);
}
// Backprop layer 0
l0_output_grad[0] = 0;
for (uint j = 1; j < l0_output_size; ++ j) {
float l0_grad = l0_output_grad[j] * l0_dropout_mask[j];
if (l0_output[j] <= 0) // Relu activation: grad in negative part is zero
l0_grad = 0;
l0_output_grad[j] = l0_grad;
}
// Update linear and interaction weights
__m256 ymm_eta = _mm256_set1_ps(eta);
__m256 ymm_lambda = _mm256_set1_ps(lambda);
for (const ffm_feature * fa = start; fa != end; ++ fa) {
uint index = rehash(fa->index);
float value = fa->value;
float * wl = lin_w + index * l0_output_size;
float * wgl = lin_wg + index * l0_output_size;
__m256 ymm_val = _mm256_set1_ps(value / linear_norm);
for (uint d = 0; d < l0_output_size; d += 8) {
__m256 ymm_kappa_val = _mm256_load_ps(l0_output_grad + d) * ymm_val;
// Load weights
__m256 ymm_wl = _mm256_load_ps(wl + d);
__m256 ymm_wgl = _mm256_load_ps(wgl + d);
// Compute gradient values
__m256 ymm_g = ymm_lambda * ymm_wl + ymm_kappa_val;
// Update weights
ymm_wgl = ymm_wgl + ymm_g * ymm_g;
ymm_wl = ymm_wl - ymm_eta * ymm_g * _mm256_rsqrt_ps(ymm_wgl);
// Store weights
_mm256_store_ps(wl + d, ymm_wl);
_mm256_store_ps(wgl + d, ymm_wgl);
}
}
}