-
Notifications
You must be signed in to change notification settings - Fork 12
/
utils.py
364 lines (333 loc) · 13.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import torch
from torch import nn, optim
from torch.autograd import Variable
from torchvision import transforms
import os
from Model import Model
from model.resnet import *
from model.lenet import *
def resizeLayer(layer, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1):
if dilation == 1 and hasattr(layer, 'dilation'):
dilation = layer.dilation
if layer.__class__.__name__ is 'Conv2d':
kernel_size = (kernel_size, kernel_size) if type(kernel_size) is not tuple else kernel_size
stride = (stride, stride) if type(stride) is not tuple else stride
padding = (padding, padding) if type(padding) is not tuple else padding
sd = layer.state_dict()
sd['weight'].resize_(out_channels, in_channels, kernel_size[0], kernel_size[1])
if 'bias' in sd:
sd['bias'].resize_(out_channels)
# Define new layer
layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation=dilation)
else:
layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
layer.load_state_dict(sd)
if layer.__class__.__name__ is 'MaxPool2d':
layer = nn.MaxPool2d(kernel_size, stride=stride, dilation=dilation)
if layer.__class__.__name__ is 'Linear':
sd = layer.state_dict()
sd['weight'].resize_(out_channels, in_channels)
sd['bias'].resize_(out_channels)
layer = nn.Linear(in_channels, out_channels)
layer.load_state_dict(sd)
if layer.__class__.__name__ is 'ReLU':
layer = nn.ReLU(inplace=False)
if layer.__class__.__name__ is 'BatchNorm2d':
sd = layer.state_dict()
for k in sd:
sd[k].resize_(in_channels)
layer = nn.BatchNorm2d(in_channels, eps=layer.eps, momentum=layer.momentum, affine=layer.affine)
layer.load_state_dict(sd)
return layer
def determine_fc_size(inp, model):
output = model.features(inp)
return output.view(-1).size()[0]
def output_results(resultsFile, accsPerModel, paramsPerModel, rewardsPerModel):
resultsString = ''
s = '-- Models ranked by accuracy --'
print(s)
resultsString += s + "\n"
i = 1
for k in sorted(accsPerModel, key=accsPerModel.get)[::-1]:
s = '#%d: model%f acc %f' % (i, k, accsPerModel[k])
print(s)
resultsString += s + "\n"
i += 1
i = 1
s = '-- Models ranked by size --'
print(s)
resultsString += s + "\n"
for k in sorted(paramsPerModel, key=paramsPerModel.get):
s = '#%d: model%f size %d' % (i, k, paramsPerModel[k])
print(s)
resultsString += s + "\n"
i += 1
i = 1
for k in sorted(rewardsPerModel, key=rewardsPerModel.get)[::-1]:
s = '#%d: model%f reward %f ' % (i, k, rewardsPerModel[k])
print(s)
resultsString += s + "\n"
i += 1
if resultsFile:
resultsFile.write(resultsString)
def numParams(model):
return sum([len(w.view(-1)) for w in model.parameters()])
def train(dataset, net):
net.add_module('LogSoftmax', nn.LogSoftmax())
print (dataset.args.cuda)
dataset.net = net.cuda() if dataset.args.cuda else net.cpu()
train_acc = []
val_acc = [-1]
for i in xrange(1, dataset.args.epochs+1):
train_acc.append(dataset.train(i))
acc = dataset.test()
if i >= 2 and acc < 0.2:
break
print('Val acc: ' + str(acc))
val_acc.append(acc)
return max(val_acc)
def removeLayers(m, type):
if m.__class__.__name__ == type:
return True
for k in m._modules.keys():
res = removeLayers(m._modules[k], type)
if res:
del m._modules[k]
return False
import time
import itertools
def trainTeacherStudent(teacher, student, dataset, epochs=5, lr=0.0005):
startTime = time.time()
student = student.cuda()
teacher = teacher.cuda()
# If there is a log softmax somewhere, delete it in both teacher and student
removeLayers(teacher, type='LogSoftmax')
removeLayers(teacher, type='Softmax')
removeLayers(student, type='LogSoftmax')
removeLayers(student, type='Softmax')
MSEloss = nn.MSELoss().cuda()
optimizer = optim.SGD(student.parameters(), lr=lr, momentum=0.9, nesterov=True, weight_decay=5e-4)
student.train()
for i in range(1, epochs+1):
for b_idx, (data, targets) in enumerate(dataset.train_loader):
data = data.cuda()
data = Variable(data)
optimizer.zero_grad()
studentOutput = student(data)
teacherOutput = teacher(data).detach()
loss = MSEloss(studentOutput, teacherOutput)
loss.backward()
optimizer.step()
student.add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = student
removeLayers(student, type='LogSoftmax')
print(dataset.test())
print('Train Epoch: {} \tLoss: {:.6f}'.format(i, loss.data[0]))
student.add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = student
acc = dataset.test()
print('Time elapsed: {}'.format(time.time()-startTime))
return acc
import torch.nn.functional as F
def trainTeacherStudentRand(teacher, student, dataset, epochs=50, lr=0.0001):
startTime = time.time()
student = student.cuda()
teacher = teacher.cuda()
# If there is a log softmax somewhere, delete it in both teacher and student
removeLayers(teacher, type='LogSoftmax')
removeLayers(teacher, type='Softmax')
removeLayers(student, type='LogSoftmax')
removeLayers(student, type='Softmax')
MSEloss = nn.MSELoss().cuda()
optimizer = optim.Adam(student.parameters(), lr=lr, weight_decay=5e-4)
student.train()
for i in range(1, epochs+1):
for b_idx, (data, targets) in enumerate(dataset.train_loader):
data = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))(torch.rand(64, 3, 32, 32)).cuda()
data = Variable(data)
optimizer.zero_grad()
studentOutput = student(data)
teacherOutput = teacher(data).detach()
loss = MSEloss(studentOutput, teacherOutput)
loss.backward()
optimizer.step()
student.add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = student
removeLayers(student, type='LogSoftmax')
print(dataset.test())
print('Train Epoch: {} \tLoss: {:.6f}'.format(i, loss.data[0]))
student.add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = student
acc = dataset.test()
print('Time elapsed: {}'.format(time.time()-startTime))
return acc
def trainTeacherStudentNew(teacher, student, dataset, epochs=5, lr=0.0005, T=3.0, lambd=0.3):
startTime = time.time()
student = student.cuda()
teacher = teacher.cuda()
# If there is a log softmax somewhere, delete it in both teacher and student
removeLayers(teacher, type='LogSoftmax')
removeLayers(teacher, type='Softmax')
removeLayers(student, type='LogSoftmax')
removeLayers(student, type='Softmax')
MSEloss = nn.MSELoss().cuda()
optimizer = optim.Adam(student.parameters(), lr=lr, weight_decay=5e-4)
student.train()
for i in range(1, epochs+1):
for b_idx, (data, targets) in enumerate(dataset.train_loader):
data = data.cuda()
data = Variable(data)
targets = targets.cuda()
targets = Variable(targets)
optimizer.zero_grad()
studentOutput = F.log_softmax(student(data)/T)
teacherOutput = F.log_softmax(teacher(data).detach()/T)
loss = (1-lambd)*MSEloss(studentOutput, teacherOutput) + lambd*F.nll_loss(studentOutput, targets)
loss.backward()
optimizer.step()
student.add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = student
removeLayers(student, type='LogSoftmax')
print(dataset.test())
print('Train Epoch: {} \tLoss: {:.6f}'.format(i, loss.data[0]))
student.add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = student
acc = dataset.test()
print('Time elapsed: {}'.format(time.time()-startTime))
return acc
def trainTeacherStudentParallel(teacher, students, dataset, epochs=5, lr=0.0005):
if len(students) == 0:
return []
startTime = time.time()
students = [student.cuda() for student in students]
teacher = teacher.cuda()
# If there is a log softmax somewhere, delete it in both teacher and student
removeLayers(teacher, type='LogSoftmax')
for student in students:
removeLayers(student, type='LogSoftmax')
student.train()
MSEloss = nn.MSELoss().cuda()
optimizers = [optim.Adam(student.parameters(), lr=lr, weight_decay=5e-4) for student in students]
for i in range(1, epochs+1):
for b_idx, (data, targets) in enumerate(dataset.train_loader):
data = data.cuda()
teacherOutput = teacher(Variable(data)).detach()
for j in range(len(students)):
studentData = Variable(data)
optimizers[j].zero_grad()
studentOutput = students[j](studentData)
loss = MSEloss(studentOutput, teacherOutput)
loss.backward()
optimizers[j].step()
print('Train Epoch: {}'.format(i))
for j in range(len(students)):
removeLayers(students[j], type='LogSoftmax')
students[j].add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = students[j]
print('Student {} acc {}'.format(j, dataset.test()))
removeLayers(student, type='LogSoftmax')
accs = []
for student in students:
removeLayers(student, type='LogSoftmax')
student.add_module('LogSoftmax', nn.LogSoftmax())
dataset.net = student
accs.append(dataset.test())
print('Time elapsed {}'.format(time.time() - startTime))
return accs
def trainNormal(studentModel, dataset, epochs=5):
return trainNormalParallel([studentModel], dataset, epochs)[0]
def trainNormalParallel(studentModels, dataset, epochs=5):
accs = []
for model in studentModels:
dataset.net = model
for i in range(1, epochs+1):
dataset.train(i)
acc = dataset.test()
accs.append(acc)
return accs
layerTypes = ['Unknown', 'Conv2d', 'MaxPool2d', 'ReLU', 'BatchNorm2d', 'Linear', 'Dropout', 'LogSoftmax', 'AvgPool2d', 'L2Norm', 'Softmax']
def getLayerType(layer):
name = layer.__class__.__name__
return max(layerTypes.index(name), 0)
import torch.nn.init as init
def weights_init(m):
if isinstance(m, nn.Conv2d):
init.xavier_uniform(m.weight)
def resetModel(m):
if len(m._modules) == 0 and hasattr(m, 'reset_parameters'):
m.reset_parameters()
return
for i in m._modules.values():
resetModel(i)
'''
def resetModel(model):
for l in model.features._modules.values():
if hasattr(l, 'reset_parameters'):
l.reset_parameters()
for l in model.classifier._modules.values():
if hasattr(l, 'reset_parameters'):
l.reset_parameters()
#model.apply(weights_init)
return model
'''
import Layer
def resizeToFit(layer, inp):
if layer._layer.__class__.__name__ is 'Linear':
in_channels = inp.view(inp.size(0), -1).size(1)
return resizeLayer(layer._layer, in_channels, layer._layer.out_features)
in_channels = inp.size(1)
if 'weight' in layer._layer._parameters:
_, kernel_size, stride, out_channels, padding = layer.getRepresentation()
return resizeLayer(layer._layer, in_channels, out_channels, kernel_size, stride, padding)
if layer._layer.__class__.__name__ is 'ReLU':
return nn.ReLU(inplace=False)
return layer._layer
def createParentContainer(m):
classname = m.__class__.__name__
if classname == 'Sequential':
return nn.Sequential()
elif classname in ['BasicBlock', 'Bottleneck', 'BasicBlockModifiable']:
return BasicBlockModifiable(shortcut=m.shortcut if hasattr(m, 'shortcut') else None)
elif classname == 'ResNet' or classname == 'ResNetModifiable':
return ResNetModifiable()
elif classname == 'VGG':
return Model(None, None)
elif classname == 'LeNet':
return Model(None, None)
elif classname == 'mnist_model':
return Model(None, None)
elif classname == 'Model':
return Model(None, None)
elif classname == 'SSD':
from model.ssd import SSDModifiable
return SSDModifiable()
elif classname == 'ModuleList':
return nn.ModuleList()
def flattenModule(m):
if len(m._modules) == 0:
return [m]
top = []
for i in m._modules.values():
bottom = flattenModule(i)
top.extend(bottom)
return top
def layersFromModule(m):
if len(m._modules) == 0:
m.skipstart = 0
m.skipend = 0
return [m]
top = []
for i in m._modules:
bottom = layersFromModule(m._modules[i])
#print(i, bottom)
if i in ['layers']:
# Introduce skip connections to layers in bottom
n = len(bottom)
for j in range(n):
bottom[j].skipstart = j
bottom[j].skipend = n - j - 1
top.extend(bottom)
return top
def saveModels(epoch, models, modelSavePath):
for i in range(len(models)):
torch.save(models[i], os.path.join(modelSavePath, '%f_%f.net' %(epoch, i)))