-
Notifications
You must be signed in to change notification settings - Fork 2
/
133.clone-graph.java
170 lines (151 loc) · 3.82 KB
/
133.clone-graph.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
* @lc app=leetcode id=133 lang=java
*
* [133] Clone Graph
*
* https://leetcode.com/problems/clone-graph/description/
*
* algorithms
* Medium (35.06%)
* Likes: 1907
* Dislikes: 1399
* Total Accepted: 354.1K
* Total Submissions: 1M
* Testcase Example: '[[2,4],[1,3],[2,4],[1,3]]'
*
* Given a reference of a node in a connected undirected graph.
*
* Return a deep copy (clone) of the graph.
*
* Each node in the graph contains a val (int) and a list (List[Node]) of its
* neighbors.
*
*
* class Node {
* public int val;
* public List<Node> neighbors;
* }
*
*
*
*
* Test case format:
*
* For simplicity sake, each node's value is the same as the node's index
* (1-indexed). For example, the first node with val = 1, the second node with
* val = 2, and so on. The graph is represented in the test case using an
* adjacency list.
*
* Adjacency list is a collection of unordered lists used to represent a finite
* graph. Each list describes the set of neighbors of a node in the graph.
*
* The given node will always be the first node with val = 1. You must return
* the copy of the given node as a reference to the cloned graph.
*
*
* Example 1:
*
*
* Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
* Output: [[2,4],[1,3],[2,4],[1,3]]
* Explanation: There are 4 nodes in the graph.
* 1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val =
* 4).
* 2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val =
* 3).
* 3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val =
* 4).
* 4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val =
* 3).
*
*
* Example 2:
*
*
* Input: adjList = [[]]
* Output: [[]]
* Explanation: Note that the input contains one empty list. The graph consists
* of only one node with val = 1 and it does not have any neighbors.
*
*
* Example 3:
*
*
* Input: adjList = []
* Output: []
* Explanation: This an empty graph, it does not have any nodes.
*
*
* Example 4:
*
*
* Input: adjList = [[2],[1]]
* Output: [[2],[1]]
*
*
*
* Constraints:
*
*
* 1 <= Node.val <= 100
* Node.val is unique for each node.
* Number of Nodes will not exceed 100.
* There is no repeated edges and no self-loops in the graph.
* The Graph is connected and all nodes can be visited starting from the given
* node.
*
*
*/
// @lc code=start
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> neighbors;
public Node() {
val = 0;
neighbors = new ArrayList<Node>();
}
public Node(int _val) {
val = _val;
neighbors = new ArrayList<Node>();
}
public Node(int _val, ArrayList<Node> _neighbors) {
val = _val;
neighbors = _neighbors;
}
}
*/
import java.util.*;
class Solution {
public Node cloneGraph(Node node) {
Node result = cloned(node);
return result;
}
public Node cloned(Node node){
if(node == null){
return null;
}
Map<Node,Node> map = new HashMap<Node,Node>();
Queue<Node> queue = new LinkedList<>();
queue.add(node);
map.put(node,new Node(node.val));
while(!queue.isEmpty()){
Node temp = queue.poll();
Node n1clone = map.get(temp);
if(temp.neighbors!=null){
for(Node t : temp.neighbors){
Node n2clone = map.get(t);
if(n2clone==null){
queue.add(t);
n2clone = new Node(t.val);
map.put(t,n2clone);
}
n1clone.neighbors.add(n2clone);
}
}
}
return map.get(node);
}
}
// @lc code=end