-
Notifications
You must be signed in to change notification settings - Fork 2
/
53.maximum-subarray.java
86 lines (81 loc) · 1.45 KB
/
53.maximum-subarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/*
* @lc app=leetcode id=53 lang=java
*
* [53] Maximum Subarray
*
* https://leetcode.com/problems/maximum-subarray/description/
*
* algorithms
* Easy (46.62%)
* Likes: 9264
* Dislikes: 436
* Total Accepted: 1.2M
* Total Submissions: 2.5M
* Testcase Example: '[-2,1,-3,4,-1,2,1,-5,4]'
*
* Given an integer array nums, find the contiguous subarray (containing at
* least one number) which has the largest sum and return its sum.
*
* Follow up: If you have figured out the O(n) solution, try coding another
* solution using the divide and conquer approach, which is more subtle.
*
*
* Example 1:
*
*
* Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
* Output: 6
* Explanation: [4,-1,2,1] has the largest sum = 6.
*
*
* Example 2:
*
*
* Input: nums = [1]
* Output: 1
*
*
* Example 3:
*
*
* Input: nums = [0]
* Output: 0
*
*
* Example 4:
*
*
* Input: nums = [-1]
* Output: -1
*
*
* Example 5:
*
*
* Input: nums = [-2147483647]
* Output: -2147483647
*
*
*
* Constraints:
*
*
* 1 <= nums.length <= 2 * 10^4
* -2^31 <= nums[i] <= 2^31 - 1
*
*
*/
// @lc code=start
class Solution {
public int maxSubArray(int[] nums) {
int maxSoFar = nums[0];
int maxEndingHere = nums[0];
for(int i=1;i<nums.length;i++){
maxEndingHere = Math.max(maxEndingHere + nums[i],nums[i]);
maxSoFar = Math.max(maxSoFar,maxEndingHere);
}
return maxSoFar;
//anurag
}
}
// @lc code=end