forked from raspberrypi/pico-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bme280_spi.c
241 lines (196 loc) · 8.7 KB
/
bme280_spi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/spi.h"
/* Example code to talk to a bme280 humidity/temperature/pressure sensor.
NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefore SPI) cannot be used at 5v.
You will need to use a level shifter on the SPI lines if you want to run the
board at 5v.
Connections on Raspberry Pi Pico board and a generic bme280 board, other
boards may vary.
GPIO 16 (pin 21) MISO/spi0_rx-> SDO/SDO on bme280 board
GPIO 17 (pin 22) Chip select -> CSB/!CS on bme280 board
GPIO 18 (pin 24) SCK/spi0_sclk -> SCL/SCK on bme280 board
GPIO 19 (pin 25) MOSI/spi0_tx -> SDA/SDI on bme280 board
3.3v (pin 36) -> VCC on bme280 board
GND (pin 38) -> GND on bme280 board
Note: SPI devices can have a number of different naming schemes for pins. See
the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
for variations.
This code uses a bunch of register definitions, and some compensation code derived
from the Bosch datasheet which can be found here.
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
*/
#define READ_BIT 0x80
int32_t t_fine;
uint16_t dig_T1;
int16_t dig_T2, dig_T3;
uint16_t dig_P1;
int16_t dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9;
uint8_t dig_H1, dig_H3;
int8_t dig_H6;
int16_t dig_H2, dig_H4, dig_H5;
/* The following compensation functions are required to convert from the raw ADC
data from the chip to something usable. Each chip has a different set of
compensation parameters stored on the chip at point of manufacture, which are
read from the chip at startup and used in these routines.
*/
int32_t compensate_temp(int32_t adc_T) {
int32_t var1, var2, T;
var1 = ((((adc_T >> 3) - ((int32_t) dig_T1 << 1))) * ((int32_t) dig_T2)) >> 11;
var2 = (((((adc_T >> 4) - ((int32_t) dig_T1)) * ((adc_T >> 4) - ((int32_t) dig_T1))) >> 12) * ((int32_t) dig_T3))
>> 14;
t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
}
uint32_t compensate_pressure(int32_t adc_P) {
int32_t var1, var2;
uint32_t p;
var1 = (((int32_t) t_fine) >> 1) - (int32_t) 64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t) dig_P6);
var2 = var2 + ((var1 * ((int32_t) dig_P5)) << 1);
var2 = (var2 >> 2) + (((int32_t) dig_P4) << 16);
var1 = (((dig_P3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) + ((((int32_t) dig_P2) * var1) >> 1)) >> 18;
var1 = ((((32768 + var1)) * ((int32_t) dig_P1)) >> 15);
if (var1 == 0)
return 0;
p = (((uint32_t) (((int32_t) 1048576) - adc_P) - (var2 >> 12))) * 3125;
if (p < 0x80000000)
p = (p << 1) / ((uint32_t) var1);
else
p = (p / (uint32_t) var1) * 2;
var1 = (((int32_t) dig_P9) * ((int32_t) (((p >> 3) * (p >> 3)) >> 13))) >> 12;
var2 = (((int32_t) (p >> 2)) * ((int32_t) dig_P8)) >> 13;
p = (uint32_t) ((int32_t) p + ((var1 + var2 + dig_P7) >> 4));
return p;
}
uint32_t compensate_humidity(int32_t adc_H) {
int32_t v_x1_u32r;
v_x1_u32r = (t_fine - ((int32_t) 76800));
v_x1_u32r = (((((adc_H << 14) - (((int32_t) dig_H4) << 20) - (((int32_t) dig_H5) * v_x1_u32r)) +
((int32_t) 16384)) >> 15) * (((((((v_x1_u32r * ((int32_t) dig_H6)) >> 10) * (((v_x1_u32r *
((int32_t) dig_H3))
>> 11) + ((int32_t) 32768))) >> 10) + ((int32_t) 2097152)) *
((int32_t) dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t) dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
return (uint32_t) (v_x1_u32r >> 12);
}
#ifdef PICO_DEFAULT_SPI_CSN_PIN
static inline void cs_select() {
asm volatile("nop \n nop \n nop");
gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 0); // Active low
asm volatile("nop \n nop \n nop");
}
static inline void cs_deselect() {
asm volatile("nop \n nop \n nop");
gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 1);
asm volatile("nop \n nop \n nop");
}
#endif
#if defined(spi_default) && defined(PICO_DEFAULT_SPI_CSN_PIN)
static void write_register(uint8_t reg, uint8_t data) {
uint8_t buf[2];
buf[0] = reg & 0x7f; // remove read bit as this is a write
buf[1] = data;
cs_select();
spi_write_blocking(spi_default, buf, 2);
cs_deselect();
sleep_ms(10);
}
static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {
// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.
reg |= READ_BIT;
cs_select();
spi_write_blocking(spi_default, ®, 1);
sleep_ms(10);
spi_read_blocking(spi_default, 0, buf, len);
cs_deselect();
sleep_ms(10);
}
/* This function reads the manufacturing assigned compensation parameters from the device */
void read_compensation_parameters() {
uint8_t buffer[26];
read_registers(0x88, buffer, 24);
dig_T1 = buffer[0] | (buffer[1] << 8);
dig_T2 = buffer[2] | (buffer[3] << 8);
dig_T3 = buffer[4] | (buffer[5] << 8);
dig_P1 = buffer[6] | (buffer[7] << 8);
dig_P2 = buffer[8] | (buffer[9] << 8);
dig_P3 = buffer[10] | (buffer[11] << 8);
dig_P4 = buffer[12] | (buffer[13] << 8);
dig_P5 = buffer[14] | (buffer[15] << 8);
dig_P6 = buffer[16] | (buffer[17] << 8);
dig_P7 = buffer[18] | (buffer[19] << 8);
dig_P8 = buffer[20] | (buffer[21] << 8);
dig_P9 = buffer[22] | (buffer[23] << 8);
dig_H1 = buffer[25];
read_registers(0xE1, buffer, 8);
dig_H2 = buffer[0] | (buffer[1] << 8);
dig_H3 = (int8_t) buffer[2];
dig_H4 = buffer[3] << 4 | (buffer[4] & 0xf);
dig_H5 = (buffer[5] >> 4) | (buffer[6] << 4);
dig_H6 = (int8_t) buffer[7];
}
static void bme280_read_raw(int32_t *humidity, int32_t *pressure, int32_t *temperature) {
uint8_t buffer[8];
read_registers(0xF7, buffer, 8);
*pressure = ((uint32_t) buffer[0] << 12) | ((uint32_t) buffer[1] << 4) | (buffer[2] >> 4);
*temperature = ((uint32_t) buffer[3] << 12) | ((uint32_t) buffer[4] << 4) | (buffer[5] >> 4);
*humidity = (uint32_t) buffer[6] << 8 | buffer[7];
}
#endif
int main() {
stdio_init_all();
#if !defined(spi_default) || !defined(PICO_DEFAULT_SPI_SCK_PIN) || !defined(PICO_DEFAULT_SPI_TX_PIN) || !defined(PICO_DEFAULT_SPI_RX_PIN) || !defined(PICO_DEFAULT_SPI_CSN_PIN)
#warning spi/bme280_spi example requires a board with SPI pins
puts("Default SPI pins were not defined");
#else
printf("Hello, bme280! Reading raw data from registers via SPI...\n");
// This example will use SPI0 at 0.5MHz.
spi_init(spi_default, 500 * 1000);
gpio_set_function(PICO_DEFAULT_SPI_RX_PIN, GPIO_FUNC_SPI);
gpio_set_function(PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI);
gpio_set_function(PICO_DEFAULT_SPI_TX_PIN, GPIO_FUNC_SPI);
// Make the SPI pins available to picotool
bi_decl(bi_3pins_with_func(PICO_DEFAULT_SPI_RX_PIN, PICO_DEFAULT_SPI_TX_PIN, PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI));
// Chip select is active-low, so we'll initialise it to a driven-high state
gpio_init(PICO_DEFAULT_SPI_CSN_PIN);
gpio_set_dir(PICO_DEFAULT_SPI_CSN_PIN, GPIO_OUT);
gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 1);
// Make the CS pin available to picotool
bi_decl(bi_1pin_with_name(PICO_DEFAULT_SPI_CSN_PIN, "SPI CS"));
// See if SPI is working - interrograte the device for its I2C ID number, should be 0x60
uint8_t id;
read_registers(0xD0, &id, 1);
printf("Chip ID is 0x%x\n", id);
read_compensation_parameters();
write_register(0xF2, 0x1); // Humidity oversampling register - going for x1
write_register(0xF4, 0x27);// Set rest of oversampling modes and run mode to normal
int32_t humidity, pressure, temperature;
while (1) {
bme280_read_raw(&humidity, &pressure, &temperature);
// These are the raw numbers from the chip, so we need to run through the
// compensations to get human understandable numbers
pressure = compensate_pressure(pressure);
temperature = compensate_temp(temperature);
humidity = compensate_humidity(humidity);
printf("Humidity = %.2f%%\n", humidity / 1024.0);
printf("Pressure = %dPa\n", pressure);
printf("Temp. = %.2fC\n", temperature / 100.0);
sleep_ms(1000);
}
return 0;
#endif
}