forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
132 lines (108 loc) Β· 4.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import defaultdict
from dataclasses import dataclass, field
import paddle
from paddle.metric import Accuracy
from utils import load_local_dataset
from paddlenlp.prompt import (
AutoTemplate,
PromptModelForSequenceClassification,
PromptTrainer,
PromptTuningArguments,
SoftVerbalizer,
)
from paddlenlp.trainer import EarlyStoppingCallback, PdArgumentParser
from paddlenlp.transformers import AutoModelForMaskedLM, AutoTokenizer
from paddlenlp.utils.log import logger
# yapf: disable
@dataclass
class DataArguments:
data_dir: str = field(default="./data/", metadata={"help": "Path to a dataset which includes train.txt, dev.txt, test.txt, label.txt and data.txt (optional)."})
prompt: str = field(default=None, metadata={"help": "The input prompt for tuning."})
@dataclass
class ModelArguments:
model_name_or_path: str = field(default="ernie-3.0-base-zh", metadata={"help": "Build-in pretrained model name or the path to local model."})
export_type: str = field(default='paddle', metadata={"help": "The type to export. Support `paddle` and `onnx`."})
# yapf: enable
def main():
# Parse the arguments.
parser = PdArgumentParser((ModelArguments, DataArguments, PromptTuningArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
training_args.print_config(model_args, "Model")
training_args.print_config(data_args, "Data")
paddle.set_device(training_args.device)
# Load the pretrained language model.
model = AutoModelForMaskedLM.from_pretrained(model_args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
# Define the template for preprocess and the verbalizer for postprocess.
template = AutoTemplate.create_from(data_args.prompt, tokenizer, training_args.max_seq_length, model=model)
logger.info("Using template: {}".format(template.prompt))
label_file = os.path.join(data_args.data_dir, "label.txt")
with open(label_file, "r", encoding="utf-8") as fp:
label_words = defaultdict(list)
for line in fp:
data = line.strip().split("==")
word = data[1] if len(data) > 1 else data[0].split("##")[-1]
label_words[data[0]].append(word)
verbalizer = SoftVerbalizer(label_words, tokenizer, model)
# Load the few-shot datasets.
train_ds, dev_ds, test_ds = load_local_dataset(
data_path=data_args.data_dir, splits=["train", "dev", "test"], label_list=verbalizer.labels_to_ids
)
# Define the criterion.
criterion = paddle.nn.CrossEntropyLoss()
# Initialize the prompt model with the above variables.
prompt_model = PromptModelForSequenceClassification(
model, template, verbalizer, freeze_plm=training_args.freeze_plm, freeze_dropout=training_args.freeze_dropout
)
# Define the metric function.
def compute_metrics(eval_preds):
metric = Accuracy()
correct = metric.compute(paddle.to_tensor(eval_preds.predictions), paddle.to_tensor(eval_preds.label_ids))
metric.update(correct)
acc = metric.accumulate()
return {"accuracy": acc}
# Deine the early-stopping callback.
callbacks = [EarlyStoppingCallback(early_stopping_patience=4, early_stopping_threshold=0.0)]
# Initialize the trainer.
trainer = PromptTrainer(
model=prompt_model,
tokenizer=tokenizer,
args=training_args,
criterion=criterion,
train_dataset=train_ds,
eval_dataset=dev_ds,
callbacks=callbacks,
compute_metrics=compute_metrics,
)
# Traininig.
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=None)
metrics = train_result.metrics
trainer.save_model()
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Prediction.
if training_args.do_predict:
test_ret = trainer.predict(test_ds)
trainer.log_metrics("test", test_ret.metrics)
# Export static model.
if training_args.do_export:
export_path = os.path.join(training_args.output_dir, "export")
trainer.export_model(export_path, export_type=model_args.export_type)
if __name__ == "__main__":
main()