From b14e92f30057868da8e7b428223e66c6300773a1 Mon Sep 17 00:00:00 2001 From: Lordworms <48054792+Lordworms@users.noreply.github.com> Date: Wed, 22 May 2024 12:44:25 -0700 Subject: [PATCH] adding benchmark for extracting arrow statistics from parquet (#10610) * adding benchmark for extracting arrow statistics from parquet * fix clippy * fix clippy --- datafusion/core/Cargo.toml | 4 + datafusion/core/benches/parquet_statistic.rs | 205 +++++++++++++++++++ 2 files changed, 209 insertions(+) create mode 100644 datafusion/core/benches/parquet_statistic.rs diff --git a/datafusion/core/Cargo.toml b/datafusion/core/Cargo.toml index a3e299752189..a0a525a149c1 100644 --- a/datafusion/core/Cargo.toml +++ b/datafusion/core/Cargo.toml @@ -209,3 +209,7 @@ name = "sort" [[bench]] harness = false name = "topk_aggregate" + +[[bench]] +harness = false +name = "parquet_statistic" diff --git a/datafusion/core/benches/parquet_statistic.rs b/datafusion/core/benches/parquet_statistic.rs new file mode 100644 index 000000000000..39ed39d49e38 --- /dev/null +++ b/datafusion/core/benches/parquet_statistic.rs @@ -0,0 +1,205 @@ +// Licensed to the Apache Software Foundation (ASF) under one +// or more contributor license agreements. See the NOTICE file +// distributed with this work for additional information +// regarding copyright ownership. The ASF licenses this file +// to you under the Apache License, Version 2.0 (the +// "License"); you may not use this file except in compliance +// with the License. You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, +// software distributed under the License is distributed on an +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +// KIND, either express or implied. See the License for the +// specific language governing permissions and limitations +// under the License. + +//! Benchmarks of benchmark for extracting arrow statistics from parquet + +use arrow::array::{ArrayRef, DictionaryArray, Float64Array, StringArray, UInt64Array}; +use arrow_array::{Int32Array, RecordBatch}; +use arrow_schema::{ + DataType::{self, *}, + Field, Schema, +}; +use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion}; +use datafusion::datasource::physical_plan::parquet::{ + RequestedStatistics, StatisticsConverter, +}; +use parquet::arrow::{arrow_reader::ArrowReaderBuilder, ArrowWriter}; +use parquet::file::properties::WriterProperties; +use std::sync::Arc; +use tempfile::NamedTempFile; +#[derive(Debug, Clone)] +enum TestTypes { + UInt64, + F64, + String, + Dictionary, +} + +use std::fmt; + +impl fmt::Display for TestTypes { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self { + TestTypes::UInt64 => write!(f, "UInt64"), + TestTypes::F64 => write!(f, "F64"), + TestTypes::String => write!(f, "String"), + TestTypes::Dictionary => write!(f, "Dictionary(Int32, String)"), + } + } +} + +fn create_parquet_file(dtype: TestTypes, row_groups: usize) -> NamedTempFile { + let schema = match dtype { + TestTypes::UInt64 => { + Arc::new(Schema::new(vec![Field::new("col", DataType::UInt64, true)])) + } + TestTypes::F64 => Arc::new(Schema::new(vec![Field::new( + "col", + DataType::Float64, + true, + )])), + TestTypes::String => { + Arc::new(Schema::new(vec![Field::new("col", DataType::Utf8, true)])) + } + TestTypes::Dictionary => Arc::new(Schema::new(vec![Field::new( + "col", + DataType::Dictionary(Box::new(Int32), Box::new(Utf8)), + true, + )])), + }; + + let props = WriterProperties::builder().build(); + let file = tempfile::Builder::new() + .suffix(".parquet") + .tempfile() + .unwrap(); + let mut writer = + ArrowWriter::try_new(file.reopen().unwrap(), schema.clone(), Some(props)) + .unwrap(); + + for _ in 0..row_groups { + let batch = match dtype { + TestTypes::UInt64 => make_uint64_batch(), + TestTypes::F64 => make_f64_batch(), + TestTypes::String => make_string_batch(), + TestTypes::Dictionary => make_dict_batch(), + }; + writer.write(&batch).unwrap(); + } + writer.close().unwrap(); + file +} + +fn make_uint64_batch() -> RecordBatch { + let array: ArrayRef = Arc::new(UInt64Array::from(vec![ + Some(1), + Some(2), + Some(3), + Some(4), + Some(5), + ])); + RecordBatch::try_new( + Arc::new(arrow::datatypes::Schema::new(vec![ + arrow::datatypes::Field::new("col", UInt64, false), + ])), + vec![array], + ) + .unwrap() +} + +fn make_f64_batch() -> RecordBatch { + let array: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0])); + RecordBatch::try_new( + Arc::new(arrow::datatypes::Schema::new(vec![ + arrow::datatypes::Field::new("col", Float64, false), + ])), + vec![array], + ) + .unwrap() +} + +fn make_string_batch() -> RecordBatch { + let array: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d", "e"])); + RecordBatch::try_new( + Arc::new(arrow::datatypes::Schema::new(vec![ + arrow::datatypes::Field::new("col", Utf8, false), + ])), + vec![array], + ) + .unwrap() +} + +fn make_dict_batch() -> RecordBatch { + let keys = Int32Array::from(vec![0, 1, 2, 3, 4]); + let values = StringArray::from(vec!["a", "b", "c", "d", "e"]); + let array: ArrayRef = + Arc::new(DictionaryArray::try_new(keys, Arc::new(values)).unwrap()); + RecordBatch::try_new( + Arc::new(Schema::new(vec![Field::new( + "col", + Dictionary(Box::new(Int32), Box::new(Utf8)), + false, + )])), + vec![array], + ) + .unwrap() +} + +fn criterion_benchmark(c: &mut Criterion) { + let row_groups = 100; + use TestTypes::*; + let types = vec![UInt64, F64, String, Dictionary]; + + for dtype in types { + let file = create_parquet_file(dtype.clone(), row_groups); + let file = file.reopen().unwrap(); + let reader = ArrowReaderBuilder::try_new(file).unwrap(); + let metadata = reader.metadata(); + + let mut group = + c.benchmark_group(format!("Extract statistics for {}", dtype.clone())); + group.bench_function( + BenchmarkId::new("extract_statistics", dtype.clone()), + |b| { + b.iter(|| { + let _ = StatisticsConverter::try_new( + "col", + RequestedStatistics::Min, + reader.schema(), + ) + .unwrap() + .extract(metadata) + .unwrap(); + + let _ = StatisticsConverter::try_new( + "col", + RequestedStatistics::Max, + reader.schema(), + ) + .unwrap() + .extract(reader.metadata()) + .unwrap(); + + let _ = StatisticsConverter::try_new( + "col", + RequestedStatistics::NullCount, + reader.schema(), + ) + .unwrap() + .extract(reader.metadata()) + .unwrap(); + + let _ = StatisticsConverter::row_counts(reader.metadata()).unwrap(); + }) + }, + ); + group.finish(); + } +} + +criterion_group!(benches, criterion_benchmark); +criterion_main!(benches);