-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBestTimeToBuyAndSellStock-121.py
39 lines (30 loc) · 1.45 KB
/
BestTimeToBuyAndSellStock-121.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution(object):
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
maxProfit = 0
if len(prices) == 0: return maxProfit
minSoFar = prices[0]
for i in range(1, len(prices)):
maxProfit = max(maxProfit, prices[i] - minSoFar)
minSoFar = min(minSoFar, prices[i])
return maxProfit
print(Solution().maxProfit([7,1,5,3,6,4]))
print(Solution().maxProfit([7,6,4,3,1]))
'''
The logic to solve this problem is same as "max subarray problem" using Kadane's Algorithm. Since no body has mentioned this so far, I thought it's a good thing for everybody to know.
All the straight forward solution should work, but if the interviewer twists the question slightly by giving the difference array of prices, Ex: for {1, 7, 4, 11}, if he gives {0, 6, -3, 7}, you might end up being confused.
Here, the logic is to calculate the difference (maxCur += prices[i] - prices[i-1]) of the original array, and find a contiguous subarray giving maximum profit. If the difference falls below 0, reset it to zero.
public int maxProfit(int[] prices) {
int maxCur = 0, maxSoFar = 0;
for(int i = 1; i < prices.length; i++) {
maxCur = Math.max(0, maxCur += prices[i] - prices[i-1]);
maxSoFar = Math.max(maxCur, maxSoFar);
}
return maxSoFar;
}
*maxCur = current maximum value
*maxSoFar = maximum value found so far
'''