forked from intelligent-environments-lab/CityLearn
-
Notifications
You must be signed in to change notification settings - Fork 7
/
pezEval.py
90 lines (78 loc) · 2.73 KB
/
pezEval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import multiprocessing
import sys
from pettingzoo.test import parallel_api_test
import multiprocessing
import sys
from pettingzoo.test import parallel_api_test
from citylearn import GridLearn
from citylearn import MyEnv
from pathlib import Path
from stable_baselines3.ppo import MlpPolicy
from stable_baselines3 import PPO
import gym
import numpy as np
from copy import deepcopy
import multiprocessing
import sys
import supersuit as ss
import time
import os
import random
random.seed(12)
np.random.seed(12)
# multiprocessing.set_start_method("fork")
model_name = "null_batt"
climate_zone = 1
data_path = Path("../citylearn/data/Climate_Zone_"+str(climate_zone))
buildings_states_actions = '../citylearn/buildings_state_action_space.json'
config = {
"model_name":model_name,
"data_path":data_path,
"climate_zone":climate_zone,
"buildings_states_actions_file":buildings_states_actions,
"hourly_timesteps":4,
"percent_rl":0.5,
# "percent_rl":1,
"nclusters":1,
"max_num_houses":None
# "max_num_houses":4
}
grid = GridLearn(**config)
env = MyEnv(grid) #for _ in range(config['nclusters'])
env.grid = grid
env.initialize_rbc_agents()
print('creating pettingzoo env...')
env = ss.pettingzoo_env_to_vec_env_v0(env)
print('stacking vec env...')
# nenvs = 2
env = ss.concat_vec_envs_v0(env, 1, num_cpus=1, base_class='stable_baselines3')
grid.normalize_reward()
# print('setting the grid...')
# for env in envs:
# for n in range(nenvs):
# # env.venv.vec_envs[n].par_env.aec_env.env.env.env.grid = grids[n]
# env.venv.vec_envs[n].par_env.grid = grids[n]
# # env.venv.vec_envs[n].par_env.aec_env.env.env.env.initialize_rbc_agents()
# env.venv.vec_envs[n].par_env.initialize_rbc_agents()
# models = [PPO.load(f"models/{model_name}/model_{m}") for m in range(len(envs))]
model = PPO.load(f"models/{model_name}/model")
sum_reward = 0
obss env.reset() #for env in envs]
for ts in range(365*24*4): # test on 5 timesteps
# for m in range(len(models)): # again, alternate through models
# # get the current observation from the perspective of the active team
# # this can probably be cleaned up
# foo = []
# for e in range(nenvs):
# bar = list(envs[m].venv.vec_envs[n].par_env.aec_env.env.env.env.env.state().values())
# for i in range(len(bar)):
# while len(bar[i]) < 13:
# bar[i] = np.append(bar[i], 0)
# foo += bar
#
# obss[m] = np.vstack(foo)
action = model.predict(obss, deterministic=True)[0] # send it to the SB model to select an action
print(action)
print(grid.ts)
obss, reward, done, info = env.step(action) # update environment
env.venv.vec_envs[0].par_env.grid.plot_all()