-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathclassifier.py
391 lines (333 loc) · 17.7 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Imports
import numpy as np
import os
import features
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
import time
import cv2
import visualizer
class Classifier(object):
# Constructor
def __init__(self,num_train_examples,image):
# Data directories
self.root_car = 'vehicles'
self.root_notcars = 'non-vehicles'
# Data attributes
self.image_width = image.shape[0]
self.image_height = image.shape[1]
# Define classifier attributes
self.color_space = 'YUV' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb
self.orient = 9
self.pix_per_cell = 8
self.cell_per_block = 2
self.hog_channel = "ALL" # Can be 0, 1, 2, or "ALL"
self.spatial_size = (32,32)
self.hist_bins = 32
self.spatial_feat = True
self.hist_feat = True
self.hog_feat = True
self.num_train_examples = num_train_examples
# Sliding window search
windows_1 = self.slide_window(x_start_stop=[540,925], y_start_stop=[400,432], xy_window=(16,16), xy_overlap=(0, 0))
windows_2 = self.slide_window(x_start_stop=[600,1280], y_start_stop=[400,464], xy_window=(64,64), xy_overlap=(0.5, 0))
windows_3 = self.slide_window(x_start_stop=[500,1280], y_start_stop=[400,496], xy_window=(96,96), xy_overlap=(0.5, 0))
windows_4 = self.slide_window(x_start_stop=[520,1280], y_start_stop=[400,528], xy_window=(128,128), xy_overlap=(0.8, 0))
windows_5 = self.slide_window(x_start_stop=[340,1280], y_start_stop=[400,656], xy_window=(256,256), xy_overlap=(0.8, 0.8))
self.windows = windows_2 + windows_3 + windows_4
print("Number of Windows: ", len(self.windows))
# Debug
self.debug = True
if self.debug:
windows_image = visualizer.draw_boxes(cv2.cvtColor(image,cv2.COLOR_BGR2RGB), self.windows)
visualizer.draw_image(windows_image, "Windows",save=True)
def train(self):
# Load data
cars = self.fill_data(self.root_car)
notcars = self.fill_data(self.root_notcars)
# Show an example of each kind and print number of examples
if self.debug:
test_car = visualizer.read_and_draw_image(cars[0],'Car')
test_not_car = visualizer.read_and_draw_image(notcars[0],'No_Car')
print("Number of Car examples: ", len(cars))
print("Number of Non-Car examples: ", len(notcars))
# TODO see if image ranges from 0 to 1
car_features = features.extract_features(cars[0:self.num_train_examples], color_space=self.color_space,
spatial_size=self.spatial_size, hist_bins=self.hist_bins,
orient=self.orient, pix_per_cell=self.pix_per_cell,
cell_per_block=self.cell_per_block, hog_channel=self.hog_channel,
spatial_feat=self.spatial_feat, hist_feat=self.hist_feat,
hog_feat=self.hog_feat)
notcar_features = features.extract_features(notcars[0:self.num_train_examples], color_space=self.color_space,
spatial_size=self.spatial_size, hist_bins=self.hist_bins,
orient=self.orient, pix_per_cell=self.pix_per_cell,
cell_per_block=self.cell_per_block, hog_channel=self.hog_channel,
spatial_feat=self.spatial_feat, hist_feat=self.hist_feat,
hog_feat=self.hog_feat)
if self.debug:
from skimage.feature import hog
car_feat_image = cv2.cvtColor(test_car, cv2.COLOR_RGB2YCrCb)
for channel in range(car_feat_image.shape[2]):
channel_image = car_feat_image[:, :, channel]
fd, hog_image = hog(channel_image,
orientations=self.orient, pixels_per_cell=(self.pix_per_cell, self.pix_per_cell),
cells_per_block=(self.cell_per_block, self.cell_per_block), visualise=True)
visualizer.draw_two_images(channel_image,hog_image,title='Car_Channel_' + str(channel),save=True)
notcar_feat_image = cv2.cvtColor(test_not_car, cv2.COLOR_RGB2YCrCb)
for channel in range(notcar_feat_image.shape[2]):
channel_image = notcar_feat_image[:, :, channel]
fd, hog_image = hog(channel_image,
orientations=self.orient, pixels_per_cell=(self.pix_per_cell, self.pix_per_cell),
cells_per_block=(self.cell_per_block, self.cell_per_block), visualise=True)
visualizer.draw_two_images(channel_image,hog_image,title='No_Car_Channel_' + str(channel),save=True)
# TODO normalize data
# TODO try different colorspaces
# TODO try color HOG
X = np.vstack((car_features, notcar_features)).astype(np.float64)
print(X.shape)
X_scaler = StandardScaler().fit(X)
self.X_scaler = X_scaler
scaled_X = X_scaler.transform(X)
y = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features))))
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(
scaled_X, y, test_size=0.2, random_state=rand_state)
print('Using:', self.orient, 'orientations', self.pix_per_cell,
'pixels per cell and', self.cell_per_block, 'cells per block')
print('Feature vector length:', len(X_train[0]))
# Use a linear SVC
svc = LinearSVC(C=1000)
self.svc = svc
# Check the training time for the SVC
t = time.time()
svc.fit(X_train, y_train)
t2 = time.time()
print(round(t2 - t, 2), 'Seconds to train SVC...')
# Check the score of the SVC
print('Test Accuracy of SVC = ', round(svc.score(X_test, y_test), 4))
# Check the prediction time for a single sample
t = time.time()
n_predict = 10
print('My SVC predicts: ', svc.predict(X_test[0:n_predict]))
print('For these', n_predict, 'labels: ', y_test[0:n_predict])
t2 = time.time()
print(round(t2 - t, 5), 'Seconds to predict', n_predict, 'labels with SVC')
def debug_classify(self,image):
t1 = time.time()
hot_windows = self.search_windows(image, self.windows, self.svc, self.X_scaler, color_space=self.colorspace,
spatial_size=self.spatial_size, hist_bins=self.hist_bins,
orient=self.orient, pix_per_cell=self.pix_per_cell,
cell_per_block=self.cell_per_block,
hog_channel=self.hog_channel, spatial_feat=self.spatial_feat,
hist_feat=self.hist_feat, hog_feat=self.hog_feat)
draw_image = np.copy(image)
window_img = visualizer.draw_boxes(draw_image, hot_windows, color=(0, 0, 255), thick=6)
t2 = time.time()
print(round(t2 - t1, 2), 'Seconds to classify one image')
return window_img, hot_windows
def classify(self,image):
t1 = time.time()
hot_windows = self.search_windows(image)
# draw_image = np.copy(image)
# window_img = visualizer.draw_boxes(draw_image, hot_windows, color=(0, 0, 255), thick=6)
t2 = time.time()
print(round(t2 - t1, 2), 'Seconds to classify one image')
return hot_windows
def fill_data(self,directory):
data_list = []
for root,dirs,files in os.walk(directory):
for file in files:
if file[0] == '.':
continue
data_list.append(os.path.join(root,file))
return data_list
def slide_window(self, x_start_stop=(None, None), y_start_stop=(None, None),
xy_window=(64, 64), xy_overlap=(0.5, 0.5)):
"""
Method to slide a window over the image
:param img: Input image
:param x_start_stop: Start and stop position on the x-axis
:param y_start_stop: Start and stop position on the y-axis
:param xy_window: Window size
:param xy_overlap: Overlapping factor
:return: List of windows
"""
# If x and/or y start/stop positions not defined, set to image size
if not x_start_stop[0]:
x_start = 0
else:
x_start = x_start_stop[0]
if not x_start_stop[1]:
x_stop = self.image_width
else:
x_stop = x_start_stop[1]
if not y_start_stop[0]:
y_start = 0
else:
y_start = y_start_stop[0]
if not y_start_stop[1]:
y_stop = self.image_height
else:
y_stop = y_start_stop[1]
# Compute the span of the region to be searched
xspan = x_stop - x_start
yspan = y_stop - y_start
# Compute the number of pixels per step in x/y
nx_pix_per_step = np.int(xy_window[0] * (1 - xy_overlap[0]))
ny_pix_per_step = np.int(xy_window[1] * (1 - xy_overlap[1]))
# Compute the number of windows in x/y
nx_buffer = np.int(xy_window[0] * (xy_overlap[0]))
ny_buffer = np.int(xy_window[1] * (xy_overlap[1]))
nx_windows = np.int((xspan - nx_buffer) / nx_pix_per_step)
ny_windows = np.int((yspan - ny_buffer) / ny_pix_per_step)
# Initialize a list to append window positions to
window_list = []
# Loop through finding x and y window positions
# Note: you could vectorize this step, but in practice
# you'll be considering windows one by one with your
# classifier, so looping makes sense
for ys in range(ny_windows):
for xs in range(nx_windows):
# Calculate window position
startx = xs * nx_pix_per_step + x_start
endx = startx + xy_window[0]
starty = ys * ny_pix_per_step + y_start
endy = starty + xy_window[1]
# Append window position to list
window_list.append(((startx, starty), (endx, endy)))
# Return the list of windows
return window_list
def search_windows(self,img):
#1) Create an empty list to receive positive detection windows
on_windows = []
#2) Iterate over all windows in the list
for window in self.windows:
#3) Extract the test window from original image
test_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (64, 64))
#4) Extract features for that window using single_img_features()
features = self.single_img_features(test_img)
#5) Scale extracted features to be fed to classifier
test_features = self.X_scaler.transform(np.array(features).reshape(1, -1))
#6) Predict using your classifier
prediction = self.svc.predict(test_features)
#7) If positive (prediction == 1) then save the window
if prediction == 1:
on_windows.append(window)
# visualizer.draw_image(test_img)
#8) Return windows for positive detections
return on_windows
def single_img_features(self,img):
#1) Define an empty list to receive features
img_features = []
#2) Apply color conversion if other than 'RGB'
if self.color_space != 'RGB':
if self.color_space == 'HSV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
elif self.color_space == 'LUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
elif self.color_space == 'HLS':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
elif self.color_space == 'YUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
elif self.color_space == 'YCrCb':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
else: feature_image = np.copy(img)
#3) Compute spatial features if flag is set
if self.spatial_feat == True:
spatial_features = features.bin_spatial(feature_image, size=self.spatial_size)
#4) Append features to list
img_features.append(spatial_features)
#5) Compute histogram features if flag is set
if self.hist_feat == True:
hist_features = features.color_hist(feature_image, nbins=self.hist_bins)
#6) Append features to list
img_features.append(hist_features)
#7) Compute HOG features if flag is set
if self.hog_feat == True:
if self.hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.extend(features.get_hog_features(feature_image[:,:,channel],
self.orient, self.pix_per_cell, self.cell_per_block,
vis=False, feature_vec=True))
else:
hog_features = features.get_hog_features(feature_image[:,:,self.hog_channel], self.orient,
self.pix_per_cell, self.cell_per_block, vis=False, feature_vec=True)
#8) Append features to list
img_features.append(hog_features)
#9) Return concatenated array of features
return np.concatenate(img_features)
def convert_color(self,img, conv='RGB2YCrCb'):
if conv == 'RGB2YCrCb':
return cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
if conv == 'BGR2YCrCb':
return cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
if conv == 'RGB2LUV':
return cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
# Define a single function that can extract features using hog sub-sampling and make predictions
def find_cars(self,img):
t1 = time.time()
ystart = 400
ystop = 656
scale = 1
orient = 9
pix_per_cell = 8
cell_per_block = 2
spatial_size = (32,32)
hist_bins = 32
draw_img = np.copy(img)
img = img.astype(np.float32) / 255
img_tosearch = img[ystart:ystop, :, :]
ctrans_tosearch = self.convert_color(img_tosearch, conv='RGB2YCrCb')
if scale != 1:
imshape = ctrans_tosearch.shape
ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))
# visualizer.draw_image(ctrans_tosearch)
ch1 = ctrans_tosearch[:, :, 0]
ch2 = ctrans_tosearch[:, :, 1]
ch3 = ctrans_tosearch[:, :, 2]
# Define blocks and steps as above
nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1
nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1
nfeat_per_block = orient * cell_per_block ** 2
# 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
window = 64
nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
cells_per_step = 2 # Instead of overlap, define how many cells to step
nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
nysteps = (nyblocks - nblocks_per_window) // cells_per_step
# Compute individual channel HOG features for the entire image
hog1 = features.get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog2 = features.get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
hog3 = features.get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
for xb in range(nxsteps):
for yb in range(nysteps):
ypos = yb * cells_per_step
xpos = xb * cells_per_step
# Extract HOG for this patch
hog_feat1 = hog1[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_feat2 = hog2[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_feat3 = hog3[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
xleft = xpos * pix_per_cell
ytop = ypos * pix_per_cell
# Extract the image patch
subimg = cv2.resize(ctrans_tosearch[ytop:ytop + window, xleft:xleft + window], (64, 64))
# Get color features
spatial_features = features.bin_spatial(subimg, size=spatial_size)
hist_features = features.color_hist(subimg, nbins=hist_bins)
# Scale features and make a prediction
test_features = self.X_scaler.transform(
np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1))
# test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1))
test_prediction = self.svc.predict(test_features)
if test_prediction == 1:
xbox_left = np.int(xleft * scale)
ytop_draw = np.int(ytop * scale)
win_draw = np.int(window * scale)
cv2.rectangle(draw_img, (xbox_left, ytop_draw + ystart),
(xbox_left + win_draw, ytop_draw + win_draw + ystart), (0, 0, 255), 6)
t2 = time.time()
print(round(t2 - t1, 2), 'Seconds to classify one image')
return draw_img