To download the data please follow the data documentation
The dataset includes 4 types of assets and metadata:
color
- the RGB images (1920x1440)highres_depth
- the ground-truth depth image projected from the mesh generated by Faro’s laser scanners (1920x1440)lowres_depth
- the depth image acquired by AppleDepth Lidar (256x192)confidence
- the confidence of the AppleDepth depth image (256x192)metadata.csv
- meta data per video (i.e. sky direction - (up/down/left/right))val_attributes.csv
- attributes per sample (i.e.transparent_or_reflective
- if True, the image includes a transparent or reflective objects). Manually annotated and only relevant for the Validation bin.
Data documentation describe the format of each one of the asset.
ARKitScenes/depth_upsampling/
├── Training # training bin assets folder
│ ├── 41069021 # video_id assets folder
│ │ ├── color # color assets folder
│ │ │ ├── 41069021_305.244.png # color frames
│ │ │ ├── 41069021_307.343.png
│ │ │ ├── 41069021_309.742.png
│ │ │ └── ...
│ │ ├── highres_depth # highres_depth folder
│ │ │ ├── 41069021_305.244.png # highres_depth frames
│ │ │ ├── 41069021_307.343.png
│ │ │ ├── 41069021_309.742.png
│ │ │ └── ...
│ │ ├── lowres_depth # lowres_depth folder
│ │ │ ├── 41069021_305.244.png # lowres_depth frames
│ │ │ ├── 41069021_307.343.png
│ │ │ ├── 41069021_309.742.png
│ │ │ └── ...
│ │ └── confidence # confidence folder
│ │ ├── 41069021_305.244.png # confidence frames
│ │ ├── 41069021_307.343.png
│ │ ├── 41069021_309.742.png
│ │ └── ...
│ ├──
│ └── ...
└── Validation # validation bin assets folder
└── ...
The packages required for training depth upsampling are listed in the file requirements.txt
,
to install them run
cd depth_upsampling
pip install -r requirements.txt
To view upsampling assets you can use the following script: (note that first you need to [download](#Data download) the dataset)
python3 depth_upsampling/sample_vis.py YOUR_DATA_DIR/ARKitScenes --split [train/val] --sample_id SAMPLE_ID
for example to visualize a sample from validation bin you can run:
python3 depth_upsampling/sample_vis.py YOUR_DATA_DIR/ARKitScenes --split val --sample_id 41069021_305.244.png
You can train the upsampling networks by running
python train.py --network [MSG/MSPF] --upsample_factor [2/4/8]
The training script will print to the screen the metrics once every 5k iterations.
To view the results on tensorboard
you can add a tensorboard port parameter --tbp some_port_number
to the train.py
input parameters.
This will automatically open a tensorboard process on a subprocess.