-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparse_all_R.R
199 lines (155 loc) · 6.53 KB
/
parse_all_R.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#install.packages("factoextra")
library(rtracklayer)
library(ggplot2)
library(devtools)
library(ggbiplot)
library(RColorBrewer)
library(factoextra)
library(stringr)
col.pan <- brewer.pal(n = 9, name = "Set3")
scf.dir <- "~/genomes/Drosophila.IR.flanks.no.genes/fa_only/"
gtf.dir <- "~/genomes/12_genomes/all_gtf/"
out.dir <- "~/genomes/Drosophila.IR.flanks.no.genes/out/"
gtf.list <- grep(".gtf", list.files(gtf.dir), value = TRUE)
scf.list <- grep(".fa", list.files(scf.dir), value = TRUE)
out.list <- grep(".out", list.files(out.dir), value = TRUE)
#coords <- read.delim("~/genomes/comp.transposones/coords")
#coords <- coords[order(coords$spec),]
#ir.length <- coords$end-coords$start
fa.length <- read.table("~/genomes/Drosophila.IR.flanks.no.genes/fa/fa.length", header = F)
fa.length <- fa.length$V2
ir.length <- fa.length
unique(gtf$type)
compart <- data.frame(scf.list, gtf.list)
genes.count <- data.frame()
percentages.df <- data.frame()
for (i in seq(1:9)){
setwd(gtf.dir)
gtf <- rtracklayer::import(gtf.list[i])
gtf <- as.data.frame(gtf)
gtf$seqnames <- as.character(gtf$seqnames)
sub.test <- gtf[which(gtf$seqnames == coords$chr[i]),]
sub.test <- sub.test[which(sub.test$start > coords$start[i]),]
sub.test <- sub.test[which(sub.test$end < coords$end[i]),]
all.genes <- sub.test[which(sub.test$type == "exon"),]
sum.length <- sum(all.genes$end-all.genes$start)
setwd(out.dir)
out.df <- read.table(out.list[i])
names(out.df) <- c("score", "div", "del", "ins",
"qseq", "qbegin", "qend", "qleft",
"strand", "repeat_id", "class",
"sbegin","send", "sleft")
sum.trans.length <- sum(out.df$qend - out.df$qbegin)
df <- data.frame(coords$spec[i], nrow(sub.test[which(sub.test$type == "gene"),]), sum.length, sum.trans.length)
print(df)
genes.count <- rbind(df, genes.count)
}
names(genes.count) <- c("stain", "genes", "sum.gene.length", "sum.trans.length")
genes.count <- genes.count[order(genes.count$stain),]
genes.count$ir.length <- coords$end-coords$start
View(genes.count)
genes.count$trans.idx <- 100*(genes.count$sum.trans.length/(coords$end-coords$start))
genes.count$gene.idx <-100*(genes.count$sum.gene.length/(coords$end-coords$start))
idx <- data.frame(genes.count$gene.idx, genes.count$trans.idx)
idx$names <- genes.count$stain
names(idx) <- c("genes", "trans", "names")
idx <- melt(idx, id.vars = "names")
ggplot(data = idx) + geom_bar(aes(x = names, y = value, color = variable, fill = variable), stat = "identity") + theme_bw()
###
read.table("~/genomes/Drosophila.IR.flanks.no.genes/fa/script.sh", header = FALSE)
###MAIN
setwd(out.dir)
tr.for.pca <- data.frame(stringsAsFactors = FALSE)
for (i in seq(1:12)){
df <- read.table(out.list[i])
names(df) <- c("score", "div", "del", "ins",
"qseq", "qbegin", "qend", "qleft",
"strand", "repeat_id", "class",
"sbegin","send", "sleft")
df <- as.data.frame(df)
df$spec <- paste(out.list[i])
df$qbegin <- df$qbegin/ir.length[i]
df$qend <- df$qend/ir.length[i]
sub.tr.for.pca.df <- data.frame(df$class, df$spec, df$score, df$div, df$del, df$ins,
df$qbegin, df$qend,
df$sbegin,
df$send)
tr.for.pca <- rbind(sub.tr.for.pca.df, tr.for.pca)
}
tr.for.pca$df.spec <- strtrim(tr.for.pca$df.spec, 4)
tr.for.pca$df.sbegin <- gsub("\\(|\\)", "", tr.for.pca$df.sbegin)
tr.for.pca$df.sbegin <- as.numeric(tr.for.pca$df.sbegin)
tr.for.pca$df.class <- as.character(tr.for.pca$df.class)
tr.for.pca[grepl("DNA", tr.for.pca$df.class),]$df.class <- "DNA"
tr.for.pca[grepl("LINE", tr.for.pca$df.class),]$df.class <- "LINE"
tr.for.pca[grepl("LTR", tr.for.pca$df.class),]$df.class <- "LTR"
tr.for.pca[grepl("Simple", tr.for.pca$df.class),]$df.class <- "Satellite"
tr.for.pca[grepl("Low", tr.for.pca$df.class),]$df.class <- "Satellite"
#PCA
p <- prcomp(tr.for.pca[,3:8],center = TRUE)
ggbiplot(p, groups = tr.for.pca$df.spec, var.axes = TRUE, ellipse = TRUE, choices = c(1,3)) + theme_bw()
ggsave(g, filename = "trans_PCA.pdf",device = "pdf",width = 32, height = 22)
### barplot by class
### new
new.table <- read.table("~/genomes/Drosophila.IR.flanks.no.genes/fa/coords")
names(new.table) <- c("spec", "reg", "start", "end")
setwd(gtf.dir)
big.sus <- data.frame()
for(f in gtf.list){
print(f)
gtf <- as.data.frame(rtracklayer::import(f))
spec <- strtrim(f, 4)
regs <- new.table[which(new.table$spec== spec),]
a <- 0
sgm <- 0
c <- 0
for (z in 1:nrow(regs)){
sub.gtf <- as.data.frame(gtf[which(gtf$seqnames == as.character(regs[z,2])),])
sub.gtf <- sub.gtf[which(sub.gtf$start > regs[z,3]),]
sub.gtf <- sub.gtf[which(sub.gtf$start < regs[z,4]),]
b <- sub.gtf[which(sub.gtf$type == "gene"),]
sgm <- sum(b$width)
a <- a + nrow(sub.gtf[which(sub.gtf$type == "gene"),])
c <- sgm + c
print(paste(nrow(b), "is not final!", sep = " "))
}
print(paste(a, "is final!", sep = " "))
sus <- data.frame(spec, a, c)
big.sus <- rbind(sus, big.sus)
}
big.sus <- big.sus[order(big.sus$spec, decreasing = TRUE),]
big.sus$ir.length <- ir.length
big.sus$gene.perc <- big.sus$c/big.sus$ir.length
View(big.sus)
sub_big <- data.frame()
for (f in unique(tr.for.pca$df.spec)){
print(f)
sub <- tr.for.pca[which(tr.for.pca$df.spec == f),]
tab <- data.frame(table(t(sub$df.class)))
dft <- data.frame(f, "Genes", big.sus[which(big.sus$spec == f),]$gene.perc)
names(dft) <- c("spec","Var1", "Freq")
tab$spec <- f
tab <- rbind(dft, tab)
sub_big <- rbind(tab, sub_big)
}
ggplot(data=sub_big) + geom_bar(aes(x = spec, y = Freq, color = Var1, fill = Var1), stat = "identity") + theme_bw()
sub_big <- data.frame()
for (f in unique(tr.for.pca$df.spec)){
print(f)
sub <- tr.for.pca[which(tr.for.pca$df.spec == f),]
frq.sub <- data.frame()
for(z in unique(sub$df.class)){
df.sub <- sub[which(sub$df.class == z),]
ss <- sum(df.sub$df.qend - df.sub$df.qbegin)
freqs <- data.frame(z,ss)
frq.sub <- rbind(freqs, frq.sub)
}
dft <- data.frame("Genes",big.sus[which(big.sus$spec == f),]$gene.perc/100, spec)
names(dft) <- c("z","ss", "spec")
frq.sub$spec <- f
frq.sub <- rbind(dft, frq.sub)
sub_big <- rbind(frq.sub, sub_big)
}
names(sub_big) <- c("rep", "freq", "spec")
sub_big$freq <- sub_big$freq*100
ggplot(data=sub_big) + geom_bar(aes(x = spec, y = freq, color = rep, fill = rep), stat = "identity") + theme_bw()