This repository has been archived by the owner on Jul 21, 2020. It is now read-only.
forked from yandexdataschool/Practical_RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pong.py
47 lines (38 loc) · 1.65 KB
/
pong.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""Auxilary files for those who wanted to solve breakout with CEM or policy gradient"""
import numpy as np
import gym
from scipy.misc import imresize
from gym.core import Wrapper
from gym.spaces.box import Box
def make_pong():
"""creates breakout env with all preprocessing done for you"""
return PreprocessAtari(gym.make("PongDeterministic-v0"))
class PreprocessAtari(Wrapper):
def __init__(self, env, height=42, width=42,
crop=lambda img: img[34:34 + 160], n_frames=4):
"""A gym wrapper that reshapes, crops and scales image into the desired shapes"""
super(PreprocessAtari, self).__init__(env)
self.img_size = (height, width)
self.crop = crop
self.observation_space = Box(0.0, 1.0, [n_frames, height, width])
self.framebuffer = np.zeros([n_frames, height, width])
def reset(self):
"""resets breakout, returns initial frames"""
self.framebuffer = np.zeros_like(self.framebuffer)
self.update_buffer(self.env.reset())
return self.framebuffer
def step(self, action):
"""plays breakout for 1 step, returns 4-frame buffer"""
new_img, r, done, info = self.env.step(action)
self.update_buffer(new_img)
return self.framebuffer, r, done, info
###image processing###
def update_buffer(self, img):
img = self.preproc_image(img)
self.framebuffer = np.vstack([img[None], self.framebuffer[:-1]])
def preproc_image(self, img):
"""what happens to the observation"""
img = self.crop(img)
img = imresize(img, self.img_size).mean(-1)
img = img.astype('float32') / 255.
return img