-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq9.py
39 lines (30 loc) · 1.01 KB
/
q9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.nn.functional as F
# Define the matrices
Q = torch.tensor([
[0.5, 0.2, 0.24, 0.46],
[0.13, 0.31, 0.25, 0.04],
[0.4, 0.15, 0.24, 0.56]
], dtype=torch.float32)
K = torch.tensor([
[0.44, 0.15, 0.21, 0.56],
[0.67, 0.75, 0.7, 0.59],
[0.18, 0.23, 0.23, 0.17]
], dtype=torch.float32)
V = torch.tensor([
[0.29, 0.56, 0.47, 0.15],
[0.21, 0.07, 0.1, 0.26],
[0.54, 0.31, 0.35, 0.61]
], dtype=torch.float32)
# Compute the dot product of Q and the transpose of K
QK_T = torch.matmul(Q, K.T)
# Scale by the square root of the dimensionality of the key vectors (number of columns in K)
d_k = K.size(1)
QK_T_scaled = QK_T / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))
# Apply softmax to get the attention weights
attention_weights = F.softmax(QK_T_scaled, dim=-1)
# Multiply the attention weights by the value matrix V to get the output
output = torch.matmul(attention_weights, V)
# Print the results
print("Attention Weights:\n", attention_weights)
print("Output:\n", output)