-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombinePhones.py
314 lines (285 loc) · 9.59 KB
/
combinePhones.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import csv
import threading
import pandas as pd
from fuzzywuzzy import fuzz
import pymysql
conn = pymysql.connect(host='localhost', user='root', db='productdata')
conn.set_charset('utf8')
cursor = conn.cursor()
sql = 'SELECT * from `phones`;'
cursor.execute(sql)
countrow = cursor.execute(sql)
print(countrow)
combinedData = pd.read_sql("SELECT * FROM phones", con= conn)
bestBuy = pd.read_sql("SELECT * FROM phones WHERE VENDOR='bestbuy'", con= conn)
print bestBuy.shape
amazon = pd.read_sql("SELECT * FROM phones WHERE VENDOR='amazon'", con= conn)
print amazon.shape
newEgg = pd.read_sql("SELECT * FROM phones WHERE VENDOR='newegg'", con= conn)
print newEgg.shape
flipkart = pd.read_sql("SELECT * FROM phones WHERE VENDOR='flipkart'", con= conn)
print flipkart.shape
snapDeal = pd.read_sql("SELECT * FROM phones WHERE VENDOR='snapdeal'", con= conn)
print snapDeal.shape
staples = pd.read_sql("SELECT * FROM phones WHERE VENDOR='staples'", con= conn)
print staples.shape
walmart = pd.read_sql("SELECT * FROM phones WHERE VENDOR='walmart'", con= conn)
print walmart.shape
def priceCorrection(dataset):
newPriceBestBuy= []
for price in dataset["Price"]:
try:
aInt = int(filter(str.isdigit, price))
except:
print "wrong price"
aInt = 0
if ("." in str(price)):
newPriceBestBuy.append(aInt * 0.01)
else:
newPriceBestBuy.append(aInt)
dataset.drop('Price', axis=1, inplace= True)
dataset.insert(4, "Price", newPriceBestBuy)
priceCorrection(bestBuy)
priceCorrection(amazon)
priceCorrection(newEgg)
priceCorrection(staples)
priceCorrection(walmart)
dollars = []
for price in snapDeal["Price"]:
aInt = int(filter(str.isdigit, price))
dollars.append(round(aInt * 0.019,2))
snapDeal.drop('Price', axis=1, inplace= True)
snapDeal.insert(4, "Price", dollars)
dollars = []
for price in flipkart["Price"]:
aInt = int(filter(str.isdigit, price))
dollars.append(round(aInt * 0.019,2))
flipkart.drop('Price', axis=1, inplace= True)
flipkart.insert(4, "Price", dollars)
print flipkart.head()
combinedDataset = [bestBuy, amazon, newEgg, staples, walmart, flipkart, snapDeal]
brands = []
brands.append("samsung")
brands.append("asus")
brands.append("apple")
brands.append("lg")
brands.append("google")
brands.append("motorola")
brands.append("huawei")
brands.append("htc")
brands.append("zte")
brands.append("other")
def identifyBrand(brands, dataset):
company = []
notFound = True
counter = 0
for name in dataset["Name"]:
counter += 1
for brand in brands:
if brand in name.lower():
company.append(brand)
notFound = False
break
if notFound:
company.append("other")
notFound = True
dataset.insert(5, "Company", company)
identifyBrand(brands, bestBuy)
identifyBrand(brands, amazon)
identifyBrand(brands, newEgg)
identifyBrand(brands, flipkart)
identifyBrand(brands, staples)
identifyBrand(brands, walmart)
identifyBrand(brands, snapDeal)
def groupByBrand(combinedDataset , d, companyNames, brandName):
i = 0
for dataset in combinedDataset:
name = dataset.groupby("Company")
try:
name.get_group(name=brandName)
d["{0}Data".format(companyNames[i])] = pd.DataFrame
print brandName + str(len(name.get_group(name=brandName)))
d["{0}Data".format(companyNames[i])] = name.get_group(name=brandName)
i += 1
except KeyError as e:
i+=1
continue
brands.append("samsung")
brands.append("asus")
brands.append("apple")
brands.append("lg")
brands.append("google")
brands.append("motorola")
brands.append("huawei")
brands.append("htc")
brands.append("zte")
brands.append("other")
dSamsung = {}
dAsus = {}
dApple = {}
dLg = {}
dGoogle = {}
dMotorola = {}
dHuawei = {}
dHtc = {}
dZte = {}
dOther = {}
combinedBrandDataset = [dSamsung, dAsus, dLg, dGoogle, dMotorola, dHuawei, dHtc, dZte, dOther]
companyNames = []
companyNames.append("bestbuy")
companyNames.append("amazon")
companyNames.append("newEgg")
companyNames.append("staples")
companyNames.append("walmart")
companyNames.append("flipkart")
companyNames.append("snapDeal")
groupByBrand(combinedDataset, dSamsung, companyNames, "samsung")
groupByBrand(combinedDataset, dAsus, companyNames, "asus")
groupByBrand(combinedDataset, dApple, companyNames, "apple")
groupByBrand(combinedDataset, dLg, companyNames, "lg")
groupByBrand(combinedDataset, dGoogle, companyNames, "google")
groupByBrand(combinedDataset, dMotorola, companyNames, "motorola")
groupByBrand(combinedDataset, dHuawei, companyNames, "huawei")
groupByBrand(combinedDataset, dHtc, companyNames, "htc")
groupByBrand(combinedDataset, dZte, companyNames, "zte")
groupByBrand(combinedDataset, dOther, companyNames, "other")
print "starting"
threads = []
def checkEquality (name1, name2, price1,price2, countSame,vendor):
similarity = fuzz.token_set_ratio(name1, name2)
if (vendor != "flipkart" and vendor != "snapdeal"):
try:
modPrice = int(filter(str.isdigit, price2))
except:
print "wrong price"
modPrice = 0
if ("." in str(price2)):
modPrice = (modPrice * 0.01)
else:
modPrice = int(filter(str.isdigit, price2))
modPrice = (round(modPrice * 0.019, 2))
# if (similarity > 85):
# print str(countSame) + " Similarity: " + str(similarity) + " " + name1 + " " + name2
# return True
# else:
# return False
if (similarity > 85):
if (abs(modPrice - price1) < 250.0):
print str(countSame) + " Similarity: " + str(similarity) + " " + name1 + " " + name2
return True
else:
print ("Entered false price")
print (name1)
print (name2)
print (price1)
print (modPrice)
return False
else:
return False
combinedMaster = []
def comparePlain (combinedPlain, master):
print len(combinedPlain)
print combinedPlain
print len(master)
print master
count = 0
found = False
for dataset in combinedPlain:
for i, row in dataset.iterrows():
for modelNumber in master.keys():
count += 1
productID = master[modelNumber][0]
rowName = combinedData[combinedData.ID == productID].Name.item()
rowPrice = combinedData[combinedData.ID == productID].Price.item()
rowVendor = combinedData[combinedData.ID == productID].Vendor.item()
if (checkEquality(rowName, row["Name"], row["Price"], rowPrice, count, rowVendor)):
productDetails = master[modelNumber]
productDetails.append(row["ID"])
master[modelNumber] = productDetails
found = True
break
if found == False:
print count
print "Entered"
productDetails = []
productDetails.append(row["ID"])
master[row["Name"]] = productDetails
found = False
print count
print "Final Master Length: " + str(len(master))
print "printing master"
print master
combinedMaster.append(master)
for dBrand in combinedBrandDataset:
combinedPlain = []
master = {}
for data in dBrand:
if ("newEgg" in data):
print "entered"
d = dBrand[data]
print d.shape
dPlain = d[d["ModelNumber"] == "none"]
print dPlain.shape
dModelNumber = d[d["ModelNumber"] != "none"]
print dModelNumber.shape
combinedPlain.append(dPlain)
for i, row in dModelNumber.iterrows():
if row['ModelNumber'].strip() in master:
productDetails = master[row['ModelNumber'].strip()]
productDetails.append(row["ID"])
else:
productDetails = []
productDetails.append(row["ID"])
master[row["ModelNumber"].strip()] = productDetails
print "Master Length: " + str(len(master))
print master
print len(master)
print len(combinedPlain)
t1 = threading.Thread(target=comparePlain, args=(combinedPlain,master))
t1.start()
threads.append(t1)
for thread in threads:
thread.join()
laptopMaster = {}
for masterDict in combinedMaster:
IDMapping = {}
for key in masterDict:
productIDs = masterDict[key]
rating = 2
if (len(productIDs) > 2):
rating = 1
try:
cursor.execute(
"INSERT into phonescombination(Name,Rating) VALUES ('%s', '%s')" % \
(key, rating))
except:
print "error while inserting into phonesCombo"
continue
IDMapping[key] = cursor.lastrowid
conn.commit()
for key in masterDict:
try:
insertedId = IDMapping[key]
productIDs = masterDict[key]
for currid in productIDs:
try:
cursor.execute("UPDATE phones SET phoneMapping=%d WHERE ID=%d" % (insertedId, currid))
except:
print "error while inserting into phones"
continue
except:
print "wrong key"
continue
conn.commit()
conn.close()
print len(laptopMaster)
count = 0
for i in laptopMaster:
list = laptopMaster[i]
if (len(list) > 2):
count +=1
print count
with open('PhonesMaster.csv', 'wb') as csv_file:
writer = csv.writer(csv_file)
for key, value in laptopMaster.items():
writer.writerow([key, value])