-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathProgBlocks.py
257 lines (207 loc) · 8.99 KB
/
ProgBlocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import torch.nn as nn
from .ProgNet import ProgBlock
I_FUNCTION = (lambda x : x)
#=================================<ProgBlocks>=================================#
"""
A ProgBlock containing a single fully connected layer (nn.Linear).
Activation function can be customized but defaults to nn.ReLU.
"""
class ProgDenseBlock(ProgBlock):
def __init__(self, inSize, outSize, numLaterals, activation = nn.ReLU(), skipConn = False, lambdaSkip = I_FUNCTION):
super().__init__()
self.numLaterals = numLaterals
self.inSize = inSize
self.outSize = outSize
self.skipConn = skipConn
self.skipVar = None
self.skipFunction = lambdaSkip
self.module = nn.Linear(inSize, outSize)
self.laterals = nn.ModuleList([nn.Linear(inSize, outSize) for _ in range(numLaterals)])
if activation is None: self.activation = (lambda x: x)
else: self.activation = activation
def runBlock(self, x):
if self.skipConn:
self.skipVar = x
return self.module(x)
def runLateral(self, i, x):
lat = self.laterals[i]
return lat(x)
def runActivation(self, x):
if self.skipConn and self.skipVar is not None:
x = x + self.skipFunction(self.skipVar)
return self.activation(x)
def getData(self):
data = dict()
data["type"] = "Dense"
data["input_size"] = self.inSize
data["output_size"] = self.outSize
data["skip"] = self.skipConn
return data
def getShape(self):
return (self.inSize, self.outSize)
"""
A ProgBlock containing a single fully connected layer (nn.Linear) and a batch norm.
Activation function can be customized but defaults to nn.ReLU.
"""
class ProgDenseBNBlock(ProgBlock):
def __init__(self, inSize, outSize, numLaterals, activation = nn.ReLU(), bnArgs = dict(), skipConn = False, lambdaSkip = I_FUNCTION):
super().__init__()
self.numLaterals = numLaterals
self.inSize = inSize
self.outSize = outSize
self.skipConn = skipConn
self.skipVar = None
self.skipFunction = lambdaSkip
self.module = nn.Linear(inSize, outSize)
self.moduleBN = nn.BatchNorm1d(outSize, **bnArgs)
self.laterals = nn.ModuleList([nn.Linear(inSize, outSize) for _ in range(numLaterals)])
self.lateralBNs = nn.ModuleList([nn.BatchNorm1d(outSize, **bnArgs) for _ in range(numLaterals)])
if activation is None: self.activation = (lambda x: x)
else: self.activation = activation
def runBlock(self, x):
if self.skipConn:
self.skipVar = x
return self.moduleBN(self.module(x))
def runLateral(self, i, x):
lat = self.laterals[i]
bn = self.lateralBNs[i]
return bn(lat(x))
def runActivation(self, x):
if self.skipConn and self.skipVar is not None:
x = x + self.skipFunction(self.skipVar)
return self.activation(x)
def getData(self):
data = dict()
data["type"] = "DenseBN"
data["input_size"] = self.inSize
data["output_size"] = self.outSize
data["skip"] = self.skipConn
return data
def getShape(self):
return (self.inSize, self.outSize)
'''
"""
A ProgBlock containing a single Conv2D layer (nn.Conv2d).
Activation function can be customized but defaults to nn.ReLU.
Stride, padding, dilation, groups, bias, and padding_mode can be set with layerArgs.
"""
class ProgConv2DBlock(ProgBlock):
def __init__(self, inSize, outSize, kernelSize, numLaterals, activation = nn.ReLU(), layerArgs = dict(), skipConn = False, lambdaSkip = I_FUNCTION):
super().__init__()
self.numLaterals = numLaterals
self.inSize = inSize
self.outSize = outSize
self.skipConn = skipConn
self.skipVar = None
self.skipFunction = lambdaSkip
self.kernSize = kernelSize
self.module = nn.Conv2d(inSize, outSize, kernelSize, **layerArgs)
self.laterals = nn.ModuleList([nn.Conv2d(inSize, outSize, kernelSize, **layerArgs) for _ in range(numLaterals)])
if activation is None: self.activation = (lambda x: x)
else: self.activation = activation
def runBlock(self, x):
if self.skipConn:
self.skipVar = x
return self.module(x)
def runLateral(self, i, x):
lat = self.laterals[i]
return lat(x)
def runActivation(self, x):
if self.skipConn and self.skipVar is not None:
x = x + self.skipFunction(self.skipVar)
return self.activation(x)
def getData(self):
data = dict()
data["type"] = "Conv2D"
data["input_size"] = self.inSize
data["output_size"] = self.outSize
data["kernel_size"] = self.kernSize
data["skip"] = self.skipConn
return data
"""
A ProgBlock containing a single Conv2D layer (nn.Conv2d) with Batch Normalization.
Activation function can be customized but defaults to nn.ReLU.
Stride, padding, dilation, groups, bias, and padding_mode can be set with layerArgs.
"""
class ProgConv2DBNBlock(ProgBlock):
def __init__(self, inSize, outSize, kernelSize, numLaterals, activation = nn.ReLU(), layerArgs = dict(), bnArgs = dict(), skipConn = False, lambdaSkip = I_FUNCTION):
super().__init__()
self.numLaterals = numLaterals
self.inSize = inSize
self.outSize = outSize
self.skipConn = skipConn
self.skipVar = None
self.skipFunction = lambdaSkip
self.kernSize = kernelSize
self.module = nn.Conv2d(inSize, outSize, kernelSize, **layerArgs)
self.moduleBN = nn.BatchNorm2d(outSize, **bnArgs)
self.laterals = nn.ModuleList([nn.Conv2d(inSize, outSize, kernelSize, **layerArgs) for _ in range(numLaterals)])
self.lateralBNs = nn.ModuleList([nn.BatchNorm2d(outSize, **bnArgs) for _ in range(numLaterals)])
if activation is None: self.activation = (lambda x: x)
else: self.activation = activation
def runBlock(self, x):
if self.skipConn:
self.skipVar = x
return self.moduleBN(self.module(x))
def runLateral(self, i, x):
lat = self.laterals[i]
bn = self.lateralBNs[i]
return bn(lat(x))
def runActivation(self, x):
if self.skipConn and self.skipVar is not None:
x = x + self.skipFunction(self.skipVar)
return self.activation(x)
def getData(self):
data = dict()
data["type"] = "Conv2DBN"
data["input_size"] = self.inSize
data["output_size"] = self.outSize
data["kernel_size"] = self.kernSize
data["skip"] = self.skipConn
return data
"""
A ProgBlock containing a single ConvTranspose2D layer (nn.ConvTranspose2d) with Batch Normalization.
Activation function can be customized but defaults to nn.ReLU.
Stride, padding, dilation, groups, bias, and padding_mode can be set with layerArgs.
"""
class ProgConvTranspose2DBNBlock(ProgBlock):
def __init__(self, inSize, outSize, kernelSize, numLaterals, activation = nn.ReLU(), layerArgs = dict(), bnArgs = dict(), skipConn = False, lambdaSkip = I_FUNCTION):
super().__init__()
self.numLaterals = numLaterals
self.inSize = inSize
self.outSize = outSize
self.skipConn = skipConn
self.skipVar = None
self.skipFunction = lambdaSkip
self.kernSize = kernelSize
self.module = nn.ConvTranspose2d(inSize, outSize, kernelSize, **layerArgs)
self.moduleBN = nn.BatchNorm2d(outSize, **bnArgs)
self.laterals = nn.ModuleList([nn.ConvTranspose2d(inSize, outSize, kernelSize, **layerArgs) for _ in range(numLaterals)])
self.lateralBNs = nn.ModuleList([nn.BatchNorm2d(outSize, **bnArgs) for _ in range(numLaterals)])
if activation is None: self.activation = (lambda x: x)
else: self.activation = activation
def runBlock(self, x):
if self.skipConn:
self.skipVar = x
return self.moduleBN(self.module(x))
def runLateral(self, i, x):
lat = self.laterals[i]
bn = self.lateralBNs[i]
return bn(lat(x))
def runActivation(self, x):
if self.skipConn and self.skipVar is not None:
x = x + self.skipFunction(self.skipVar)
return self.activation(x)
def getData(self):
data = dict()
data["type"] = "ProgConvTranspose2DBN"
data["input_size"] = self.inSize
data["output_size"] = self.outSize
data["kernel_size"] = self.kernSize
data["skip"] = self.skipConn
return data
def getShape(self):
return (self.inSize, self.outSize)
'''
#===============================================================================