-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path20080703c.py
116 lines (109 loc) · 4.58 KB
/
20080703c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""Follow the steps of a recursive tree reconstruction algorithm.
The exact bipartition criterion is a matrix function by Eric Stone.
"""
from StringIO import StringIO
import numpy as np
from SnippetUtil import HandlingError
import Util
import MatrixUtil
import NewickIO
import FelTree
import Clustering
import NeighborhoodJoining
from Form import RadioItem
import Form
import FormOut
def get_form():
"""
@return: the body of a form
"""
# define the default distance matrix and the ordered labels
# this is from figure two of a paper called why neighbor joining works
D = np.array([
[ 0, 2.7, 2.6, 2.6, 2.6, 4.4, 4.4, 4.4],
[2.7, 0, 4.4, 4.4, 4.4, 2.6, 2.6, 2.6],
[2.6, 4.4, 0, 0.1, 0.4, 2.7, 2.7, 2.7],
[2.6, 4.4, 0.1, 0, 0.4, 2.7, 2.7, 2.7],
[2.6, 4.4, 0.4, 0.4, 0, 2.7, 2.7, 2.7],
[4.4, 2.6, 2.7, 2.7, 2.7, 0, 0.1, 0.4],
[4.4, 2.6, 2.7, 2.7, 2.7, 0.1, 0, 0.4],
[4.4, 2.6, 2.7, 2.7, 2.7, 0.4, 0.4, 0]])
labels = list('xyabcmnp')
# define the default newick tree string
tree_string = '(((a, b), c), x, (((m, n), p), y));'
tree = NewickIO.parse(tree_string, FelTree.NewickTree)
formatted_tree_string = NewickIO.get_narrow_newick_string(tree, 60)
# define the form objects
form_objects = [
Form.Matrix('matrix', 'perturbed distance matrix',
D, MatrixUtil.assert_predistance),
Form.MultiLine('labels', 'ordered labels',
'\n'.join(labels)),
Form.MultiLine('tree', 'original tree (branch lengths optional)',
formatted_tree_string),
Form.RadioGroup('criterion', 'bipartition function', [
RadioItem('exact', 'exact criterion', True),
RadioItem('sign', 'spectral sign approximation'),
RadioItem('threshold', 'spectral threshold approximation'),
RadioItem('nj', 'neighbor joining criterion')]),
Form.RadioGroup('recourse', 'recourse for degenerate partitions', [
RadioItem('njrecourse', 'neighbor joining', True),
RadioItem('halvingrecourse', 'leaf stem length halving')])]
return form_objects
def get_form_out():
return FormOut.Report()
def get_response_content(fs):
# read the matrix
D = fs.matrix
if len(D) < 3:
raise HandlingError('the matrix should have at least three rows')
# read the ordered labels
ordered_labels = Util.get_stripped_lines(StringIO(fs.labels))
if len(ordered_labels) != len(D):
msg_a = 'the number of ordered labels should be the same '
msg_b = 'as the number of rows in the matrix'
raise HandlingError(msg_a + msg_b)
if len(set(ordered_labels)) != len(ordered_labels):
raise HandlingError('the ordered labels must be unique')
# read the criterion string, creating the splitter object
if fs.exact:
splitter = Clustering.StoneExactDMS()
elif fs.sign:
splitter = Clustering.StoneSpectralSignDMS()
elif fs.threshold:
splitter = Clustering.StoneSpectralThresholdDMS()
elif fs.nj:
splitter = Clustering.NeighborJoiningDMS()
# Make sure that the splitter object
# is appropriate for the size of the distance matrix.
if splitter.get_complexity(len(D)) > 1000000:
msg = 'use a smaller distance matrix or a faster bipartition function'
raise HandlingError(msg)
# read the original tree
tree = NewickIO.parse(fs.tree, FelTree.NewickTree)
if len(ordered_labels) != len(list(tree.gen_tips())):
msg_a = 'the number of ordered labels should be the same '
msg_b = 'as the number of tips in the tree'
raise HandlingError(msg_a + msg_b)
tree_tip_names = set(tip.name for tip in tree.gen_tips())
if tree_tip_names != set(ordered_labels):
msg_a = 'the leaf labels of the tree do not match '
msg_b = 'the ordered labels of the distance matrix rows'
raise HandlingError(msg_a + msg_b)
# create the tree builder
tree_builder = NeighborhoodJoining.ValidatingTreeBuilder(
D.tolist(), ordered_labels, splitter)
# Read the recourse string and set the corresponding method
# in the tree builder.
if fs.njrecourse:
tree_builder.set_fallback_name('nj')
elif fs.halvingrecourse:
tree_builder.set_fallback_name('halving')
# define the response
out = StringIO()
# set parameters of the tree validating tree builder
tree_builder.set_original_tree(tree)
tree_builder.set_output_stream(out)
tree = tree_builder.build()
# return the response
return out.getvalue()