forked from tesseract-ocr/tesstrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Makefile
374 lines (308 loc) · 13.2 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
export
# Disable built-in suffix and implicit pattern rules (for software builds).
# This makes starting with a very large number of GT lines much faster.
MAKEFLAGS += -r
## Make sure that sort always uses the same sort order.
LC_ALL := C
SHELL := /bin/bash
LOCAL := $(PWD)/usr
PATH := $(LOCAL)/bin:$(PATH)
# Path to the .traineddata directory with traineddata suitable for training
# (for example from tesseract-ocr/tessdata_best). Default: $(LOCAL)/share/tessdata
TESSDATA = $(LOCAL)/share/tessdata
# Name of the model to be built. Default: $(MODEL_NAME)
MODEL_NAME = foo
# Data directory for output files, proto model, start model, etc. Default: $(DATA_DIR)
DATA_DIR = data
# Output directory for generated files. Default: $(OUTPUT_DIR)
OUTPUT_DIR = $(DATA_DIR)/$(MODEL_NAME)
# Ground truth directory. Default: $(GROUND_TRUTH_DIR)
GROUND_TRUTH_DIR := $(OUTPUT_DIR)-ground-truth
# Optional Wordlist file for Dictionary dawg. Default: $(WORDLIST_FILE)
WORDLIST_FILE := $(OUTPUT_DIR)/$(MODEL_NAME).wordlist
# Optional Numbers file for number patterns dawg. Default: $(NUMBERS_FILE)
NUMBERS_FILE := $(OUTPUT_DIR)/$(MODEL_NAME).numbers
# Optional Punc file for Punctuation dawg. Default: $(PUNC_FILE)
PUNC_FILE := $(OUTPUT_DIR)/$(MODEL_NAME).punc
# Name of the model to continue from. Default: '$(START_MODEL)'
START_MODEL =
LAST_CHECKPOINT = $(OUTPUT_DIR)/checkpoints/$(MODEL_NAME)_checkpoint
# Name of the proto model. Default: '$(PROTO_MODEL)'
PROTO_MODEL = $(OUTPUT_DIR)/$(MODEL_NAME).traineddata
# No of cores to use for compiling leptonica/tesseract. Default: $(CORES)
CORES = 4
# Leptonica version. Default: $(LEPTONICA_VERSION)
LEPTONICA_VERSION := 1.80.0
# Tesseract commit. Default: $(TESSERACT_VERSION)
TESSERACT_VERSION := 4.1.1
# Tesseract model repo to use. Default: $(TESSDATA_REPO)
TESSDATA_REPO = _best
# If EPOCHS is given, it is used to set MAX_ITERATIONS.
ifeq ($(EPOCHS),)
# Max iterations. Default: $(MAX_ITERATIONS)
MAX_ITERATIONS := 10000
else
MAX_ITERATIONS := -$(EPOCHS)
endif
# Debug Interval. Default: $(DEBUG_INTERVAL)
DEBUG_INTERVAL := 0
# Learning rate. Default: $(LEARNING_RATE)
ifdef START_MODEL
LEARNING_RATE := 0.0001
else
LEARNING_RATE := 0.002
endif
# Network specification. Default: $(NET_SPEC)
NET_SPEC := [1,36,0,1 Ct3,3,16 Mp3,3 Lfys48 Lfx96 Lrx96 Lfx192 O1c\#\#\#]
# Language Type - Indic, RTL or blank. Default: '$(LANG_TYPE)'
LANG_TYPE ?=
# Normalization mode - 2, 1 - for unicharset_extractor and Pass through Recoder for combine_lang_model
ifeq ($(LANG_TYPE),Indic)
NORM_MODE =2
RECODER =--pass_through_recoder
GENERATE_BOX_SCRIPT =generate_wordstr_box.py
else
ifeq ($(LANG_TYPE),RTL)
NORM_MODE =3
RECODER =--pass_through_recoder --lang_is_rtl
GENERATE_BOX_SCRIPT =generate_wordstr_box.py
else
NORM_MODE =2
RECODER=
GENERATE_BOX_SCRIPT =generate_line_box.py
endif
endif
# Page segmentation mode. Default: $(PSM)
PSM = 13
# Random seed for shuffling of the training data. Default: $(RANDOM_SEED)
RANDOM_SEED := 0
# Ratio of train / eval training data. Default: $(RATIO_TRAIN)
RATIO_TRAIN := 0.90
# Default Target Error Rate. Default: $(TARGET_ERROR_RATE)
TARGET_ERROR_RATE := 0.01
# BEGIN-EVAL makefile-parser --make-help Makefile
help:
@echo ""
@echo " Targets"
@echo ""
@echo " unicharset Create unicharset"
@echo " lists Create lists of lstmf filenames for training and eval"
@echo " training Start training"
@echo " traineddata Create best and fast .traineddata files from each .checkpoint file"
@echo " proto-model Build the proto model"
@echo " leptonica Build leptonica"
@echo " tesseract Build tesseract"
@echo " tesseract-langs Download tesseract-langs"
@echo " clean-box Clean generated .box files"
@echo " clean-lstmf Clean generated .lstmf files"
@echo " clean-output Clean generated output files"
@echo " clean Clean all generated files"
@echo ""
@echo " Variables"
@echo ""
@echo " TESSDATA Path to the .traineddata directory with traineddata suitable for training "
@echo " (for example from tesseract-ocr/tessdata_best). Default: $(TESSDATA)"
@echo " MODEL_NAME Name of the model to be built. Default: $(MODEL_NAME)"
@echo " DATA_DIR Data directory for output files, proto model, start model, etc. Default: $(DATA_DIR)"
@echo " OUTPUT_DIR Output directory for generated files. Default: $(OUTPUT_DIR)"
@echo " GROUND_TRUTH_DIR Ground truth directory. Default: $(GROUND_TRUTH_DIR)"
@echo " WORDLIST_FILE Optional Wordlist file for Dictionary dawg. Default: $(WORDLIST_FILE)"
@echo " NUMBERS_FILE Optional Numbers file for number patterns dawg. Default: $(NUMBERS_FILE)"
@echo " PUNC_FILE Optional Punc file for Punctuation dawg. Default: $(PUNC_FILE)"
@echo " START_MODEL Name of the model to continue from. Default: '$(START_MODEL)'"
@echo " PROTO_MODEL Name of the proto model. Default: '$(PROTO_MODEL)'"
@echo " CORES No of cores to use for compiling leptonica/tesseract. Default: $(CORES)"
@echo " LEPTONICA_VERSION Leptonica version. Default: $(LEPTONICA_VERSION)"
@echo " TESSERACT_VERSION Tesseract commit. Default: $(TESSERACT_VERSION)"
@echo " TESSDATA_REPO Tesseract model repo to use (_fast or _best). Default: $(TESSDATA_REPO)"
@echo " MAX_ITERATIONS Max iterations. Default: $(MAX_ITERATIONS)"
@echo " EPOCHS Set max iterations based on the number of lines for the training. Default: none"
@echo " DEBUG_INTERVAL Debug Interval. Default: $(DEBUG_INTERVAL)"
@echo " LEARNING_RATE Learning rate. Default: $(LEARNING_RATE)"
@echo " NET_SPEC Network specification. Default: $(NET_SPEC)"
@echo " LANG_TYPE Language Type - Indic, RTL or blank. Default: '$(LANG_TYPE)'"
@echo " PSM Page segmentation mode. Default: $(PSM)"
@echo " RANDOM_SEED Random seed for shuffling of the training data. Default: $(RANDOM_SEED)"
@echo " RATIO_TRAIN Ratio of train / eval training data. Default: $(RATIO_TRAIN)"
@echo " TARGET_ERROR_RATE Default Target Error Rate. Default: $(TARGET_ERROR_RATE)"
# END-EVAL
.PRECIOUS: $(OUTPUT_DIR)/checkpoints/$(MODEL_NAME)*_checkpoint
.PHONY: clean help leptonica lists proto-model tesseract tesseract-langs training unicharset
ALL_GT = $(OUTPUT_DIR)/all-gt
ALL_LSTMF = $(OUTPUT_DIR)/all-lstmf
# Create unicharset
unicharset: $(OUTPUT_DIR)/unicharset
# Create lists of lstmf filenames for training and eval
lists: $(OUTPUT_DIR)/list.train $(OUTPUT_DIR)/list.eval
$(OUTPUT_DIR)/list.eval \
$(OUTPUT_DIR)/list.train: $(ALL_LSTMF)
@mkdir -p $(OUTPUT_DIR)
@total=$$(wc -l < $(ALL_LSTMF)); \
train=$$(echo "$$total * $(RATIO_TRAIN) / 1" | bc); \
test "$$train" = "0" && \
echo "Error: missing ground truth for training" && exit 1; \
eval=$$(echo "$$total - $$train" | bc); \
test "$$eval" = "0" && \
echo "Error: missing ground truth for evaluation" && exit 1; \
set -x; \
head -n "$$train" $(ALL_LSTMF) > "$(OUTPUT_DIR)/list.train"; \
tail -n "$$eval" $(ALL_LSTMF) > "$(OUTPUT_DIR)/list.eval"
ifdef START_MODEL
$(OUTPUT_DIR)/unicharset: $(ALL_GT)
@mkdir -p $(DATA_DIR)/$(START_MODEL)
combine_tessdata -u $(TESSDATA)/$(START_MODEL).traineddata $(DATA_DIR)/$(START_MODEL)/$(MODEL_NAME)
unicharset_extractor --output_unicharset "$(OUTPUT_DIR)/my.unicharset" --norm_mode $(NORM_MODE) "$(ALL_GT)"
merge_unicharsets $(DATA_DIR)/$(START_MODEL)/$(MODEL_NAME).lstm-unicharset $(OUTPUT_DIR)/my.unicharset "$@"
else
$(OUTPUT_DIR)/unicharset: $(ALL_GT)
@mkdir -p $(OUTPUT_DIR)
unicharset_extractor --output_unicharset "$@" --norm_mode $(NORM_MODE) "$(ALL_GT)"
endif
# Start training
training: $(OUTPUT_DIR).traineddata
$(ALL_GT): $(shell find -L $(GROUND_TRUTH_DIR) -name '*.gt.txt')
@mkdir -p $(OUTPUT_DIR)
find -L $(GROUND_TRUTH_DIR) -name '*.gt.txt' | xargs paste -s > "$@"
.PRECIOUS: %.box
%.box: %.png %.gt.txt
PYTHONIOENCODING=utf-8 python3 $(GENERATE_BOX_SCRIPT) -i "$*.png" -t "$*.gt.txt" > "$@"
%.box: %.bin.png %.gt.txt
PYTHONIOENCODING=utf-8 python3 $(GENERATE_BOX_SCRIPT) -i "$*.bin.png" -t "$*.gt.txt" > "$@"
%.box: %.nrm.png %.gt.txt
PYTHONIOENCODING=utf-8 python3 $(GENERATE_BOX_SCRIPT) -i "$*.nrm.png" -t "$*.gt.txt" > "$@"
%.box: %.tif %.gt.txt
PYTHONIOENCODING=utf-8 python3 $(GENERATE_BOX_SCRIPT) -i "$*.tif" -t "$*.gt.txt" > "$@"
$(ALL_LSTMF): $(patsubst %.gt.txt,%.lstmf,$(shell find -L $(GROUND_TRUTH_DIR) -name '*.gt.txt'))
@mkdir -p $(OUTPUT_DIR)
find -L $(GROUND_TRUTH_DIR) -name '*.lstmf' | python3 shuffle.py $(RANDOM_SEED) > "$@"
%.lstmf: %.box
@if test -f "$*.png"; then \
image="$*.png"; \
elif test -f "$*.bin.png"; then \
image="$*.bin.png"; \
elif test -f "$*.nrm.png"; then \
image="$*.nrm.png"; \
else \
image="$*.tif"; \
fi; \
set -x; \
tesseract "$${image}" $* --psm $(PSM) lstm.train
CHECKPOINT_FILES := $(wildcard $(OUTPUT_DIR)/checkpoints/$(MODEL_NAME)*.checkpoint)
.PHONY: traineddata
# Create best and fast .traineddata files from each .checkpoint file
traineddata: $(OUTPUT_DIR)/tessdata_best $(OUTPUT_DIR)/tessdata_fast
traineddata: $(subst checkpoints,tessdata_best,$(patsubst %.checkpoint,%.traineddata,$(CHECKPOINT_FILES)))
traineddata: $(subst checkpoints,tessdata_fast,$(patsubst %.checkpoint,%.traineddata,$(CHECKPOINT_FILES)))
$(OUTPUT_DIR)/tessdata_best $(OUTPUT_DIR)/tessdata_fast:
mkdir $@
$(OUTPUT_DIR)/tessdata_best/%.traineddata: $(OUTPUT_DIR)/checkpoints/%.checkpoint
lstmtraining \
--stop_training \
--continue_from $< \
--traineddata $(PROTO_MODEL) \
--model_output $@
$(OUTPUT_DIR)/tessdata_fast/%.traineddata: $(OUTPUT_DIR)/checkpoints/%.checkpoint
lstmtraining \
--stop_training \
--continue_from $< \
--traineddata $(PROTO_MODEL) \
--convert_to_int \
--model_output $@
# Build the proto model
proto-model: $(PROTO_MODEL)
$(PROTO_MODEL): $(OUTPUT_DIR)/unicharset $(DATA_DIR)/radical-stroke.txt
combine_lang_model \
--input_unicharset $(OUTPUT_DIR)/unicharset \
--script_dir $(DATA_DIR) \
--numbers $(NUMBERS_FILE) \
--puncs $(PUNC_FILE) \
--words $(WORDLIST_FILE) \
--output_dir $(DATA_DIR) \
$(RECODER) \
--lang $(MODEL_NAME)
ifdef START_MODEL
$(LAST_CHECKPOINT): unicharset lists $(PROTO_MODEL)
@mkdir -p $(OUTPUT_DIR)/checkpoints
lstmtraining \
--debug_interval $(DEBUG_INTERVAL) \
--traineddata $(PROTO_MODEL) \
--old_traineddata $(TESSDATA)/$(START_MODEL).traineddata \
--continue_from $(DATA_DIR)/$(START_MODEL)/$(MODEL_NAME).lstm \
--learning_rate $(LEARNING_RATE) \
--model_output $(OUTPUT_DIR)/checkpoints/$(MODEL_NAME) \
--train_listfile $(OUTPUT_DIR)/list.train \
--eval_listfile $(OUTPUT_DIR)/list.eval \
--max_iterations $(MAX_ITERATIONS) \
--target_error_rate $(TARGET_ERROR_RATE)
$(OUTPUT_DIR).traineddata: $(LAST_CHECKPOINT)
lstmtraining \
--stop_training \
--continue_from $(LAST_CHECKPOINT) \
--traineddata $(PROTO_MODEL) \
--model_output $@
else
$(LAST_CHECKPOINT): unicharset lists $(PROTO_MODEL)
@mkdir -p $(OUTPUT_DIR)/checkpoints
lstmtraining \
--debug_interval $(DEBUG_INTERVAL) \
--traineddata $(PROTO_MODEL) \
--learning_rate $(LEARNING_RATE) \
--net_spec "$(subst c###,c`head -n1 $(OUTPUT_DIR)/unicharset`,$(NET_SPEC))" \
--model_output $(OUTPUT_DIR)/checkpoints/$(MODEL_NAME) \
--train_listfile $(OUTPUT_DIR)/list.train \
--eval_listfile $(OUTPUT_DIR)/list.eval \
--max_iterations $(MAX_ITERATIONS) \
--target_error_rate $(TARGET_ERROR_RATE)
$(OUTPUT_DIR).traineddata: $(LAST_CHECKPOINT)
lstmtraining \
--stop_training \
--continue_from $(LAST_CHECKPOINT) \
--traineddata $(PROTO_MODEL) \
--model_output $@
endif
$(DATA_DIR)/radical-stroke.txt:
wget -O$@ 'https://github.com/tesseract-ocr/langdata_lstm/raw/main/radical-stroke.txt'
# Build leptonica
leptonica: leptonica.built
leptonica.built: leptonica-$(LEPTONICA_VERSION)
cd $< ; \
./configure --prefix=$(LOCAL) && \
make -j$(CORES) install SUBDIRS=src && \
date > "$@"
leptonica-$(LEPTONICA_VERSION): leptonica-$(LEPTONICA_VERSION).tar.gz
tar xf "$<"
leptonica-$(LEPTONICA_VERSION).tar.gz:
wget 'http://www.leptonica.org/source/$@'
# Build tesseract
tesseract: tesseract.built tesseract-langs
tesseract.built: tesseract-$(TESSERACT_VERSION)
cd $< && \
sh autogen.sh && \
PKG_CONFIG_PATH="$(LOCAL)/lib/pkgconfig" \
./configure --prefix=$(LOCAL) && \
LDFLAGS="-L$(LOCAL)/lib"\
make -j$(CORES) install && \
LDFLAGS="-L$(LOCAL)/lib"\
make -j$(CORES) training-install && \
date > "$@"
tesseract-$(TESSERACT_VERSION):
wget https://github.com/tesseract-ocr/tesseract/archive/$(TESSERACT_VERSION).zip
unzip $(TESSERACT_VERSION).zip
# Download tesseract-langs
tesseract-langs: $(TESSDATA)/eng.traineddata
$(TESSDATA)/eng.traineddata:
cd $(TESSDATA) && wget https://github.com/tesseract-ocr/tessdata$(TESSDATA_REPO)/raw/main/$(notdir $@)
# Clean generated .box files
.PHONY: clean-box
clean-box:
find -L $(GROUND_TRUTH_DIR) -name '*.box' -delete
# Clean generated .lstmf files
.PHONY: clean-lstmf
clean-lstmf:
find -L $(GROUND_TRUTH_DIR) -name '*.lstmf' -delete
# Clean generated output files
.PHONY: clean-output
clean-output:
rm -rf $(OUTPUT_DIR)
# Clean all generated files
clean: clean-box clean-lstmf clean-output