-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmagnetic_filament_simulation.py
255 lines (212 loc) · 7.59 KB
/
magnetic_filament_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import matplotlib
matplotlib.use("Agg") # Must be before importing matplotlib.pyplot or pylab!
from matplotlib import pyplot as plt
from matplotlib.colors import to_rgb
from matplotlib import cm
from mpl_toolkits.mplot3d import proj3d, Axes3D
from tqdm import tqdm
from matplotlib.patches import Circle
from typing import Dict, Sequence
from magnetic_filament.filament import Filament
from magnetic_filament.time_stepper import RungeKutta4
from magnetic_filament.integrator import integrate
from collections import defaultdict
from example.post_processing import plot_video_with_surface
class MagneticFilamentSystems(Filament):
def __init__(
self,
position,
velocity,
length,
angular_frequency,
MBA,
ramp_interval,
post_processing_dict,
step_skip,
line_density,
bending_stiffness,
axial_stiffness,
internal_damping_coeff,
real_dtype=np.float64,
):
super(MagneticFilamentSystems, self).__init__(
position,
velocity,
length,
line_density,
bending_stiffness,
axial_stiffness,
internal_damping_coeff,
real_dtype,
)
# requires state variable
self.state = np.zeros((4, self.N_nodes))
self.state_dot = np.zeros((4, self.N_nodes))
self.state[0, :] = self.position[0, :]
self.state[1, :] = self.position[1, :]
self.state[2, :] = self.velocity[0, :]
self.state[3, :] = self.velocity[1, :]
self.state_dot[0, :] = self.velocity[0, :]
self.state_dot[1, :] = self.velocity[1, :]
self.state_dot[2, :] = self.acceleration[0, :]
self.state_dot[3, :] = self.acceleration[1, :]
# Force Variables
self.MBA = MBA
self.angular_frequency = angular_frequency
self.ramp_interval = ramp_interval
# Boundary condiitons
self.start_position = self.position[..., 0:2].copy()
# Callback
self.post_processing_dict = post_processing_dict
self.step_skip = step_skip
def __call__(self, time, *args):
self.apply_boundary_conditions()
self.position[0, :] = self.state[0, :]
self.position[1, :] = self.state[1, :]
self.velocity[0, :] = self.state[2, :]
self.velocity[1, :] = self.state[3, :]
self.compute_acceleration()
self.state_dot[0, :] = self.velocity[0, :]
self.state_dot[1, :] = self.velocity[1, :]
self.state_dot[2, :] = self.acceleration[0, :]
self.state_dot[3, :] = self.acceleration[1, :]
return self.state_dot
def apply_forces_or_torques(self, time: np.float64):
factor = min(1.0, time / self.ramp_interval)
# self.external_force[0,-1] = factor * self.MBA * np.sin(self.angular_frequency*time)
self.external_force[1, -1] = (
factor * self.MBA * np.sin(self.angular_frequency * time)
)
def apply_boundary_conditions(self):
self.state[0, 0] = self.start_position[0, 0]
self.state[1, 0] = self.start_position[1, 0]
self.state[0, 1] = self.start_position[0, 1]
self.state[1, 1] = self.start_position[1, 1]
self.state[2, 0] = 0
self.state[3, 0] = 0
self.state[2, 1] = 0
self.state[3, 1] = 0
def callback(self, time, current_step: int):
if current_step % self.step_skip == 0:
position_collection = np.zeros((3, self.position.shape[-1]))
position_collection[0, :] = self.position[0, :]
position_collection[1, :] = self.position[1, :]
radius = 0.15 * np.ones((self.position.shape[-1] - 1))
self.post_processing_dict["time"].append(time)
self.post_processing_dict["step"].append(current_step)
# self.post_processing_dict["position"].append(self.position.copy())
self.post_processing_dict["velocity"].append(self.velocity.copy())
self.post_processing_dict["acceleration"].append(self.acceleration.copy())
self.post_processing_dict["radius"].append(radius.copy())
self.post_processing_dict["position"].append(position_collection.copy())
n_elem = 50
base_length = 1.5
base_radius = 0.15
base_area = np.pi * base_radius ** 2
density = 2.39e3 # kg/m3
nu = 50
E = 1.85e5 # Pa
I = np.pi / 4 * base_radius ** 4
EI = E * I
volume = base_area * base_length
line_density = density * base_area
# External forces
magnetic_field_strength = 80e-3 # 80mT
# MBAL2_EI is a non-dimensional number from Wang 2019
MBAL2_EI = (
3.82e-5 * magnetic_field_strength * 4e-3 / (1.85e5 * np.pi / 4 * (0.4e-3) ** 4)
) # Magnetization magnitude * B * Length/(EI)
magnetization_density = (
MBAL2_EI * E * I / (volume * magnetic_field_strength * base_length)
)
MBA = magnetization_density * magnetic_field_strength * base_area
angular_frequency_in_deg = 40
angular_frequency = np.deg2rad(angular_frequency_in_deg)
ramp_interval = 1.0
# FilamentPosition
initial_position = np.zeros((2, n_elem))
initial_position[0] = np.linspace(0, base_length, n_elem)
initial_velocity = np.zeros((2, n_elem))
# Simulation parameters
num_cycles = 3.0
final_time = 90
# # RK4 integration
time_step = 5e-4
total_steps = int(final_time / time_step)
rendering_fps = 5
step_skip = int(1.0 / (rendering_fps * time_step))
post_processing_dict_rk4 = defaultdict(list)
filament_object_rk4 = MagneticFilamentSystems(
initial_position,
initial_velocity,
base_length,
angular_frequency,
MBA,
ramp_interval,
post_processing_dict_rk4,
step_skip,
line_density=line_density, # density*base_area,
bending_stiffness=EI, # E*I,
axial_stiffness=EI * 1e2, # E*base_area,
internal_damping_coeff=0.8 * 40, # 4.0,
real_dtype=np.float64,
)
integrate(filament_object_rk4, RungeKutta4(), total_steps, time_step)
position_rk4 = filament_object_rk4.position
plot_video_with_surface(
[post_processing_dict_rk4],
fps=rendering_fps,
step=1,
x_limits=(-4, 4),
y_limits=(-4, 4),
z_limits=(-4, 4),
)
position_history = np.array(post_processing_dict_rk4["position"])
deflection_history = position_history[:, 1, -1]
time = np.array(post_processing_dict_rk4["time"])
# Plot the results
time_list = [50, 55, 60, 65, 70, 75, 80, 85, 90]
for idx in time_list:
plt.rcParams.update({"font.size": 22})
fig = plt.figure(figsize=(10, 10), frameon=True, dpi=150)
axs = []
axs.append(plt.subplot2grid((1, 1), (0, 0)))
axs[0].plot(
position_history[idx, 0, :],
position_history[idx, 1, :],
label="time" + str(np.round(time[idx], 2)),
)
axs[0].set_xlabel("x", fontsize=20)
axs[0].set_ylabel("y", fontsize=20)
axs[0].set_xlim(-0.2, base_length + 0.2)
axs[0].set_ylim(-0.2 - base_length, base_length + 0.2)
plt.tight_layout()
fig.align_ylabels()
fig.legend(prop={"size": 20})
fig.savefig("time" + str(np.round(time[idx], 2)) + " .png")
plt.close(plt.gcf())
plt.rcParams.update({"font.size": 22})
fig = plt.figure(figsize=(10, 10), frameon=True, dpi=150)
axs = []
axs.append(plt.subplot2grid((1, 1), (0, 0)))
axs[0].plot(
time,
deflection_history / base_length,
label=r"$\delta / L$",
)
axs[0].plot(
time,
np.sin(time * angular_frequency),
label=r"$B(t)/B_{0}$",
)
axs[0].set_xlabel("Time [s]", fontsize=20)
axs[0].set_ylabel("Amplitude", fontsize=20)
axs[0].set_title(
"Angular frequency " + str(angular_frequency_in_deg) + " deg/s", fontsize=20
)
plt.tight_layout()
fig.align_ylabels()
fig.legend(prop={"size": 20})
fig.savefig("magnetic_beam_tip_deflection_vs_time.png")
plt.close(plt.gcf())