-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathTwinPlane1.py
38 lines (33 loc) · 1.04 KB
/
TwinPlane1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/env python
import numpy as np
from numpy import linalg
from cvxopt import solvers,matrix
#__copyright__ = ""
#__license__ = "GPL"
# __version__ = "1.1"
# __maintainer__ = "Arnav Kansal"
# __email__ = "[email protected]"
# __status__ = "Production"
def Twin_plane_1(R,S,C1,Epsi1,regulz1):
StS = np.dot(S.T,S)
# for regularization we add identity matrix with wt. before inversion
StS = StS + regulz1*(np.identity(StS.shape[0]))
StSRt = linalg.solve(StS,R.T)
RtStSRt = np.dot(R,StSRt)
RtStSRt = (RtStSRt+(RtStSRt.T))/2
m2 = R.shape[0]
e2 = -np.ones((m2,1))
solvers.options['show_progress'] = False
vlb = np.zeros((m2,1))
vub = C1*(np.ones((m2,1)))
# x<=vub
# x>=vlb -> -x<=-vlb
# cdx<=vcd
cd = np.vstack((np.identity(m2),-np.identity(m2)))
vcd = np.vstack((vub,-vlb))
alpha = solvers.qp(matrix(RtStSRt,tc='d'),matrix(e2,tc='d'),matrix(cd,tc='d'),matrix(vcd,tc='d'))#,matrix(0.0,(1,m1)),matrix(0.0))#,None,matrix(x0))
alphasol = np.array(alpha['x'])
z = -np.dot(StSRt,alphasol)
w1 = z[:len(z)-1]
b1 = z[len(z)-1]
return [w1,b1]