generated from victoresque/pytorch-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
109 lines (93 loc) · 4.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse
import collections
import torch
import numpy as np
import data_loader as module_loader
import model.loss as module_loss
import model.metric as module_metric
import model.models as module_arch
import trainer as module_trainer
from parse_config import ConfigParser
import time
import os
# fix random seeds for reproducibility
SEED = 0
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config):
logger = config.get_logger('train')
trainer = config.init_obj('trainer', module_trainer)
folds = 9 if config['cross_validation'] else 1
test_all, test_low, test_high = [], [], []
for cv_run_id in range(folds):
# setup data_loader instances
config['data_loader']['args']['cross_validation_seed'] = cv_run_id
data_loader = config.init_obj('data_loader', module_loader)
valid_data_loader = data_loader.get_valid_and_test_loaders()
# build model architecture, then print to console
model = config.init_obj('arch', module_arch)
if cv_run_id == 0: logger.info(model)
# get function handles of loss and metrics
criterion = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
trainer.set_param(model, criterion, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
cv_run_id=cv_run_id)
trainer.train()
# Some custom logging code follows
# todo: put this into base trainer
# todo: make this work for r2, e.g. by checking config['classification']
try:
test_all.append(trainer.logged_metrics["test_auc"])
test_low.append(trainer.logged_metrics["test_low_auc"])
test_high.append(trainer.logged_metrics["test_high_auc"])
except KeyError:
test_all.append(trainer.logged_metrics["test_r2"])
test_low.append(trainer.logged_metrics["test_low_r2"])
test_high.append(trainer.logged_metrics["test_high_r2"])
test_all, test_low, test_high = np.array(test_all), np.array(test_low), np.array(test_high)
logger.info(f'Average test_all: {np.mean(test_all):.3f} +- {np.std(test_all):.3f}')
logger.info(f'Average test_low: {np.mean(test_low):.3f} +- {np.std(test_low):.3f}')
logger.info(f'Average test_high: {np.mean(test_high):.3f} +- {np.std(test_high):.3f}')
if config.explicit_run_id_set: # if special run_id given, save results in central place
runid = config['run_id']
fname = f'saved/{runid}/results_concise.tsv'
with open(fname, 'a') as f:
f.write(f'{config["name"]}\t{np.mean(test_all):.3f}\t{np.std(test_all):.3f}\t'
f'{np.mean(test_low):.3f}\t{np.std(test_low):.3f}\t'
f'{np.mean(test_high):.3f}\t{np.std(test_high):.3f}\n')
logger.info(f'All values test_all: {test_all}')
logger.info(f'All values test_low: {test_low}')
logger.info(f'All values test_high: {test_high}')
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default='configs/config.json', type=str,
help='config file path (default: config.json)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('-rid', '--run_id', default=None, type=str,
help='run_id of the experiment')
args.add_argument('-cv', '--cross_validation', default=False, type=bool,
help='whether to run experiments with 9-fold cross validation or not')
start = time.time()
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size')
]
config = ConfigParser.from_args(args, options)
main(config)
end = time.time()
print(f'Training took {(end-start)/60:.0f} min')