Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

model.load_state_dict(checkpoint['state_dict']) error with pytorch 0.4.0 #26

Open
alexandrecc opened this issue May 26, 2018 · 10 comments

Comments

@alexandrecc
Copy link

alexandrecc commented May 26, 2018

I was running the code without any problem on pytorch 0.3.0.
I upgraded yesterday to pytorch 0.4.0 and can't load the checkpoint file. I am on Ubuntu and python 3.6 in conda env.
I get this error:

RuntimeError Traceback (most recent call last)
in ()
181 if name == 'main':
--> 182 main()

in main()
39 print("=> loading checkpoint")
40 checkpoint = torch.load(CKPT_PATH)
---> 41 model.load_state_dict(checkpoint['state_dict'])
42 print("=> loaded checkpoint")
43 else:

~/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/module.py in load_state_dict(self, state_dict, strict)
719 if len(error_msgs) > 0:
720 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
--> 721 self.class.name, "\n\t".join(error_msgs)))
722
723 def parameters(self):

RuntimeError: Error(s) in loading state_dict for DenseNet121:
Missing key(s) in state_dict: "densenet121.features.conv0.weight", "densenet121.features.norm0.weight", "densenet121.features.norm0.bias", "densenet121.features.norm0.running_mean", "densenet121.features.norm0.running_var", "densenet121.features.denseblock1.denselayer1.norm1.weight", "densenet121.features.denseblock1.denselayer1.norm1.bias", "densenet121.features.denseblock1.denselayer1.norm1.running_mean",
(entire network ...)
"module.densenet121.features.denseblock4.denselayer16.conv.2.weight", "module.densenet121.features.norm5.weight", "module.densenet121.features.norm5.bias", "module.densenet121.features.norm5.running_mean", "module.densenet121.features.norm5.running_var", "module.densenet121.classifier.0.weight", "module.densenet121.classifier.0.bias".

It is likely related to this information about pytorch 0.4.0:
https://pytorch.org/2018/04/22/0_4_0-migration-guide.html
New edge-case constraints on names of submodules, parameters, and buffers in nn.Module
name that is an empty string or contains "." is no longer permitted in module.add_module(name, value), module.add_parameter(name, value) or module.add_buffer(name, value) because such names may cause lost data in the state_dict. If you are loading a checkpoint for modules containing such names, please update the module definition and patch the state_dict before loading it.

@drfikrah
Copy link

i hv the same problem too. @alexandrecc , do u hv any solution so far?

@ghost
Copy link

ghost commented Sep 14, 2018

You should be able to make something like this work.

import re

# Code modified from torchvision densenet source for loading from pre .4 densenet weights.
checkpoint = torch.load('./model.pth.tar')
state_dict = checkpoint['state_dict']
remove_data_parallel = False # Change if you don't want to use nn.DataParallel(model)

pattern = re.compile(
    r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
for key in list(state_dict.keys()):
    match = pattern.match(key)
    new_key = match.group(1) + match.group(2) if match else key
    new_key = new_key[7:] if remove_data_parallel else new_key
    state_dict[new_key] = state_dict[key]
    # Delete old key only if modified.
    if match or remove_data_parallel: 
        del state_dict[key]

@pharouknucleus
Copy link

Thanks JasperJenkins... This worked but I received another error in the form:
Traceback (most recent call last):
File "C:/Users/Nasir Isa/Documents/1Research/algortihm/CheXNet-master/CheXNet-master/m1.py", line 142, in
main()
File "C:/Users/Nasir Isa/Documents/1Research/algortihm/CheXNet-master/CheXNet-master/m1.py", line 83, in main
for i, (inp, target) in enumerate(test_loader):
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\utils\data\dataloader.py", line 501, in iter
return _DataLoaderIter(self)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\utils\data\dataloader.py", line 289, in init
w.start()
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\popen_spawn_win32.py", line 65, in init
reduction.dump(process_obj, to_child)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
AttributeError: Can't pickle local object 'main..'
Please help me out!

@sukumargaonkar
Copy link

Same Here

@robhyb19
Copy link

robhyb19 commented May 5, 2019

+1 Seeing this error as well, has torch implemented some way to ensure backwards compatibility when parsing older models? I can't seem to find anything and I would rather not change the keys themselves since that seems quite error prone.

@agil27
Copy link

agil27 commented Jul 15, 2020

Thanks JasperJenkins... This worked but I received another error in the form:
Traceback (most recent call last):
File "C:/Users/Nasir Isa/Documents/1Research/algortihm/CheXNet-master/CheXNet-master/m1.py", line 142, in
main()
File "C:/Users/Nasir Isa/Documents/1Research/algortihm/CheXNet-master/CheXNet-master/m1.py", line 83, in main
for i, (inp, target) in enumerate(test_loader):
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\utils\data\dataloader.py", line 501, in iter
return _DataLoaderIter(self)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\site-packages\torch\utils\data\dataloader.py", line 289, in init
w.start()
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\popen_spawn_win32.py", line 65, in init
reduction.dump(process_obj, to_child)
File "C:\Users\Nasir Isa\AppData\Local\Programs\Python\Python36\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
AttributeError: Can't pickle local object 'main..'
Please help me out!

Set num_workers=0 and try again to find the real issue.

@Aliktk
Copy link

Aliktk commented Jun 1, 2021

It's late to mentioned here, but testing started you can just put with checkpoint loading strick = False like this.
model.load_state_dict(checkpoint['state_dict'])
model.load_state_dict(checkpoint['state_dict'], strict=False )

@Ibrahmm
Copy link

Ibrahmm commented Oct 18, 2021

This Worked for me:

state_dict = checkpoint['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()

for k, v in state_dict.items():
if 'module' not in k:
k = 'module.'+k
else:
k = k.replace( 'module.densenet121.features', 'features')
k = k.replace( 'module.densenet121.classifier', 'classifier')
k = k.replace( '.norm.1', '.norm1')
k = k.replace( '.conv.1', '.conv1')
k = k.replace( '.norm.2', '.norm2')
k = k.replace( '.conv.2', '.conv2')
new_state_dict[k]=v

model.load_state_dict(new_state_dict)

@taherpat
Copy link

taherpat commented Jan 2, 2024

It's late to mentioned here, but testing started you can just put with checkpoint loading strick = False like this. model.load_state_dict(checkpoint['state_dict']) model.load_state_dict(checkpoint['state_dict'], strict=False )

did it work?

@Aliktk
Copy link

Aliktk commented Jan 15, 2024

It's late to mentioned here, but testing started you can just put with checkpoint loading strick = False like this. model.load_state_dict(checkpoint['state_dict']) model.load_state_dict(checkpoint['state_dict'], strict=False )

did it work?

yes in my case it's worked

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

9 participants