-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrl_tools_controller.c
695 lines (639 loc) · 25.7 KB
/
rl_tools_controller.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#include "debug.h"
#include "usec_time.h"
#include <math.h>
#include "math3d.h"
#include "log.h"
#include "param.h"
#include "motors.h"
#include "watchdog.h"
#include "controller_pid.h"
#include "controller_mellinger.h"
#include "controller_indi.h"
#include "controller_brescianini.h"
#include "power_distribution.h"
#include "rl_tools_adapter.h"
#include "stabilizer_types.h"
#include "pm.h"
#include "task.h"
#define CONTROL_INTERVAL_MS 2
#define CONTROL_INTERVAL_US (CONTROL_INTERVAL_MS * 1000)
#define CONTROL_PACKET_TIMEOUT_USEC (1000*200)
#define BEHIND_SCHEDULE_MESSAGE_MIN_INTERVAL (1000000)
#define CONTROL_INVOCATION_INTERVAL_ALPHA 0.95f
#define DEBUG_MEASURE_FORWARD_TIME
#define MIN_RPM 0
#define MAX_RPM 21702.1
#define WAYPOINT_NAVIGATION_NUMBER_OF_POINTS (5)
#define WARMUP_TIME (1000 * 500)
typedef enum ControllerState{
STATE_RESET,
STATE_FORWARD,
STATE_FINISHED
} ControllerState;
// State
static ControllerState controller_state;
// Counters
static uint64_t controller_tick = 0; // Number of control function invocations
static uint64_t forward_tick = 0; // Number of forward passes
// Timestamps
static uint64_t timestamp_last_reset;
static uint64_t timestamp_last_behind_schedule_message = 0;
static uint64_t timestamp_last_control_invocation = 0;
static uint64_t timestamp_last_control_packet_received = 0;
static uint64_t timestamp_last_control_packet_received_hover = 0;
static uint64_t timestamp_controller_activation;
static uint64_t timestamp_pre_set_motors;
// Logging variables
static float control_invocation_interval = 0;
// Control variables: input
static float target_pos[3] = {0, 0, 0};
static float target_vel[3] = {0, 0, 0};
static float pos_error[3] = {0, 0, 0};
static float relative_pos[3] = {0, 0, 0};
static float origin[3] = {0, 0, 0};
static float pos_distance_limit_position;
static float vel_distance_limit_position;
static float pos_distance_limit_figure_eight;
static float vel_distance_limit_figure_eight;
static float pos_distance_limit_mellinger;
static float vel_distance_limit_mellinger;
static float pos_distance_limit_bresciani;
static float vel_distance_limit_bresciani;
static uint8_t mellinger_enable_integrators;
static uint8_t log_set_motors = 0;
static float velocity_cmd_multiplier, velocity_cmd_p_term;
enum Mode{
NORMAL = 0,
POSITION = 1,
WAYPOINT_NAVIGATION = 2,
WAYPOINT_NAVIGATION_DYNAMIC = 3,
FIGURE_EIGHT = 4
};
enum TriggerMode{
RL_TOOLS_PACKET = 0,
HOVER_PACKET = 1,
};
static uint8_t mode;
static uint8_t trigger_mode;
static float trajectory[WAYPOINT_NAVIGATION_NUMBER_OF_POINTS][3] = {
{0.0, 0.0, 0.0},
{1.0, 0.0, 0.0},
{1.0, 1.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 0.0},
};
static float target_height;
static uint64_t waypoint_navigation_timestamp_start;
static uint8_t waypoint_navigation_dynamic_current_waypoint = 0;
static float waypoint_navigation_dynamic_threshold = 0.1;
static float waypoint_navigation_point_duration = 4;
static float waypoint_navigation_trajectory_scale = 0.5;
static float figure_eight_interval = 5.5;
static float figure_eight_warmup_time;
static float figure_eight_scale = 1.0;
static float figure_eight_progress = 0;
static uint64_t figure_eight_last_invocation;
static float target_height_figure_eight;
static float state_input[13];
static float action_output[4];
const uint8_t motors[4] = {MOTOR_M1, MOTOR_M2, MOTOR_M3, MOTOR_M4};
static uint8_t set_motors_overwrite = 0;
static uint16_t motor_cmd[4];
static float motor_cmd_divider, motor_cmd_divider_warmup;
static bool prev_set_motors, prev_pre_set_motors;
static uint8_t use_pre_set_warmup;
static motors_thrust_uncapped_t motorThrustUncapped;
static motors_thrust_uncapped_t motorThrustBatCompUncapped;
static motors_thrust_pwm_t motorPwm;
static setpoint_t last_setpoint;
static uint8_t hand_test = 0; // 0 = off; 1 = setpoint; 2 = angular velocity rejection; 3 = angular velocity rejection + orientation rejection;
static uint8_t use_orig_controller = 0;
static inline float clip(float v, float low, float high){
if(v < low){
return low;
}
else{
if(v > high){
return high;
}
else{
return v;
}
}
}
static inline void update_state(const sensorData_t* sensors, const state_t* state){
if(hand_test == 0){
float POS_DISTANCE_LIMIT = mode == FIGURE_EIGHT ? pos_distance_limit_figure_eight : pos_distance_limit_position;
state_input[ 0] = clip(state->position.x - target_pos[0], -POS_DISTANCE_LIMIT, POS_DISTANCE_LIMIT);
state_input[ 1] = clip(state->position.y - target_pos[1], -POS_DISTANCE_LIMIT, POS_DISTANCE_LIMIT);
state_input[ 2] = clip(state->position.z - target_pos[2], -POS_DISTANCE_LIMIT, POS_DISTANCE_LIMIT);
}
else{
state_input[ 0] = 0;
state_input[ 1] = 0;
state_input[ 2] = 0;
}
if(hand_test == 0 || hand_test == 3){
state_input[ 3] = state->attitudeQuaternion.w;
state_input[ 4] = state->attitudeQuaternion.x;
state_input[ 5] = state->attitudeQuaternion.y;
state_input[ 6] = state->attitudeQuaternion.z;
}
else{
state_input[ 3] = 1;
state_input[ 4] = 0;
state_input[ 5] = 0;
state_input[ 6] = 0;
}
if(hand_test == 0){
float VEL_DISTANCE_LIMIT = mode == FIGURE_EIGHT ? vel_distance_limit_figure_eight : vel_distance_limit_position;
state_input[ 7] = clip(state->velocity.x - target_vel[0], -VEL_DISTANCE_LIMIT, VEL_DISTANCE_LIMIT);
state_input[ 8] = clip(state->velocity.y - target_vel[1], -VEL_DISTANCE_LIMIT, VEL_DISTANCE_LIMIT);
state_input[ 9] = clip(state->velocity.z - target_vel[2], -VEL_DISTANCE_LIMIT, VEL_DISTANCE_LIMIT);
}
else{
state_input[ 7] = 0;
state_input[ 8] = 0;
state_input[ 9] = 0;
}
if(hand_test != 1){
state_input[10] = radians(sensors->gyro.x);
state_input[11] = radians(sensors->gyro.y);
state_input[12] = radians(sensors->gyro.z);
}
else{
state_input[10] = 0;
state_input[11] = 0;
state_input[12] = 0;
}
}
void rl_tools_controller_packet_received(){
uint64_t now = usecTimestamp();
timestamp_last_control_packet_received = now;
}
// void rl_tools_controller_hover_packet_received(){
// uint64_t now = usecTimestamp();
// timestamp_last_control_packet_received_hover = now;
// DEBUG_PRINT("Hover packet received\n");
// }
void controllerOutOfTreeInit(void){
controller_state = STATE_RESET;
controller_tick = 0;
motor_cmd_divider = 1.0;
motor_cmd_divider_warmup = 7.0;
motor_cmd[0] = 0;
motor_cmd[1] = 0;
motor_cmd[2] = 0;
motor_cmd[3] = 0;
timestamp_last_reset = usecTimestamp();
prev_set_motors = false;
prev_pre_set_motors = false;
use_pre_set_warmup = 0;
timestamp_last_control_packet_received = 0;
timestamp_last_control_packet_received_hover = 0;
timestamp_last_behind_schedule_message = 0;
control_invocation_interval = 0;
forward_tick = 0;
hand_test = 0;
waypoint_navigation_timestamp_start = 0;
waypoint_navigation_trajectory_scale = 0.5;
relative_pos[0] = 0;
relative_pos[1] = 0;
relative_pos[2] = 0;
log_set_motors = 0;
pos_distance_limit_position = 0.5f;
vel_distance_limit_position = 2.0f;
pos_distance_limit_figure_eight = 0.6f;
vel_distance_limit_figure_eight = 2.0f;
pos_distance_limit_mellinger = 0.2f;
vel_distance_limit_mellinger = 1.0f;
pos_distance_limit_bresciani = 0.2f;
vel_distance_limit_bresciani = 1.0f;
mellinger_enable_integrators = 1;
velocity_cmd_multiplier = 1;
velocity_cmd_p_term = 0.0;
target_height = 0.3;
target_height_figure_eight = 0.0;
// mode = NORMAL;
mode = POSITION;
// mode = FIGURE_EIGHT;
trigger_mode = RL_TOOLS_PACKET;
// trigger_mode = HOVER_PACKET;
use_orig_controller = 0;
waypoint_navigation_dynamic_current_waypoint = 0;
waypoint_navigation_dynamic_threshold = 0;
figure_eight_interval = 5.5;
figure_eight_scale = 1;
figure_eight_progress = 0;
figure_eight_warmup_time = 2;
controllerPidInit();
controllerMellingerFirmwareInit();
controllerINDIInit();
controllerBrescianiniInit();
rl_tools_init();
DEBUG_PRINT("BackpropTools controller init! Checkpoint: %s\n", rl_tools_get_checkpoint_name());
}
bool controllerOutOfTreeTest(void)
{
float output[4];
float absdiff = rl_tools_test(output);
if(absdiff < 0){
absdiff = -absdiff;
}
DEBUG_PRINT("BackpropTools controller test, abs diff: %f\n", absdiff);
for(int i = 0; i < 4; i++){
DEBUG_PRINT("BackpropTools controller: Test action %d: %f\n", i, output[i]);
}
if(absdiff > 0.2){
return false;
}
return controllerPidTest() && controllerMellingerFirmwareTest() && controllerINDITest() && controllerBrescianiniTest();
}
static void batteryCompensation(const motors_thrust_uncapped_t* motorThrustUncapped, motors_thrust_uncapped_t* motorThrustBatCompUncapped)
{
float supplyVoltage = pmGetBatteryVoltage();
for (int motor = 0; motor < STABILIZER_NR_OF_MOTORS; motor++)
{
motorThrustBatCompUncapped->list[motor] = motorsCompensateBatteryVoltage(motor, motorThrustUncapped->list[motor], supplyVoltage);
}
}
static void setMotorRatios(const motors_thrust_pwm_t* motorPwm)
{
motorsSetRatio(MOTOR_M1, motorPwm->motors.m1);
motorsSetRatio(MOTOR_M2, motorPwm->motors.m2);
motorsSetRatio(MOTOR_M3, motorPwm->motors.m3);
motorsSetRatio(MOTOR_M4, motorPwm->motors.m4);
}
static inline void every_500ms(){
#ifdef PRINT_TWIST
DEBUG_PRINT("tw.l: %5.2f, %5.2f, %5.2f tw.a: %5.2f, %5.2f, %5.2f\n", state_input[7], state_input[8], state_input[9], state_input[10], state_input[11], state_input[12]);
DEBUG_PRINT("q: %5.2f, %5.2f, %5.2f, %5.2f\n", state_input[3], state_input[4], state_input[5], state_input[6]);
#endif
}
static inline void every_1000ms(){
#ifdef PRINT_RPY
DEBUG_PRINT("rpy: %5.2f, %5.2f, %5.2f\n", attitude_rpy[0], attitude_rpy[1], attitude_rpy[2]);
#endif
DEBUG_PRINT("Last setpoint: x disposition/mode %f/%f/%d\n", last_setpoint.position.x, last_setpoint.velocity.x, last_setpoint.mode.x);
DEBUG_PRINT("Last setpoint: y disposition/mode %f/%f/%d\n", last_setpoint.position.y, last_setpoint.velocity.y, last_setpoint.mode.y);
DEBUG_PRINT("Last setpoint: z disposition/mode %f/%f/%d\n", last_setpoint.position.z, last_setpoint.velocity.z, last_setpoint.mode.z);
}
static inline void every_10000ms(){
DEBUG_PRINT("control invocation interval %f\n", (double)control_invocation_interval);
}
static inline void trigger_every(uint64_t controller_tick){
if(controller_tick > 3000){
if(controller_tick % 500 == 0){
every_500ms();
}
if(controller_tick % 1000 == 150){
every_1000ms();
}
if(controller_tick % 10000 == 9300){
every_10000ms();
}
}
}
static void print_mode(stab_mode_t mode){
switch(mode){
case modeDisable:
DEBUG_PRINT("modeDisable\n");
break;
case modeAbs:
DEBUG_PRINT("modeAbs\n");
break;
case modeVelocity:
DEBUG_PRINT("modeVelocity\n");
break;
}
}
void controllerOutOfTree(control_t *control, setpoint_t *setpoint, const sensorData_t *sensors, const state_t *state, const uint32_t tick) {
uint64_t now = usecTimestamp();
if(setpoint->mode.x == modeVelocity && setpoint->mode.y == modeVelocity){
timestamp_last_control_packet_received_hover = now;
}
last_setpoint = *setpoint;
watchdogReset();
control_invocation_interval *= CONTROL_INVOCATION_INTERVAL_ALPHA;
control_invocation_interval += (1-CONTROL_INVOCATION_INTERVAL_ALPHA) * (now - timestamp_last_control_invocation);
timestamp_last_control_invocation = now;
uint64_t relevant_timestamp_last_control_packet_received = trigger_mode == RL_TOOLS_PACKET ? timestamp_last_control_packet_received : timestamp_last_control_packet_received_hover;
bool pre_set_motors = (now - relevant_timestamp_last_control_packet_received < CONTROL_PACKET_TIMEOUT_USEC) || (set_motors_overwrite == 1 && motor_cmd_divider >= 3);
bool set_motors = false;
if(!prev_pre_set_motors && pre_set_motors){
timestamp_pre_set_motors = now;
}
set_motors = pre_set_motors && (((now - timestamp_pre_set_motors) > WARMUP_TIME) || use_pre_set_warmup == 0);
log_set_motors = set_motors ? 1 : 0;
// set_rl_tools_overwrite_stabilizer(set_motors);
if(!prev_set_motors && set_motors){
waypoint_navigation_timestamp_start = now;
timestamp_controller_activation = now;
waypoint_navigation_dynamic_current_waypoint = 0;
origin[0] = state->position.x;
origin[1] = state->position.y;
origin[2] = state->position.z + (mode == FIGURE_EIGHT ? target_height_figure_eight : target_height);
figure_eight_last_invocation = now;
figure_eight_progress = 0;
controllerMellingerFirmwareInit();
controllerINDIInit();
// controllerMellingerFirmwareEnableIntegrators(MELLINGER_ENABLE_INTEGRATORS == 1);
DEBUG_PRINT("Controller activated\n");
switch(mode){
case NORMAL:
DEBUG_PRINT("NORMAL mode \n");
DEBUG_PRINT("\t x mode: "); print_mode(setpoint->mode.x);
DEBUG_PRINT("\t y mode: "); print_mode(setpoint->mode.y);
DEBUG_PRINT("\t z mode: "); print_mode(setpoint->mode.z);
break;
case POSITION:
DEBUG_PRINT("POSITION mode\n");
break;
case WAYPOINT_NAVIGATION:
DEBUG_PRINT("WAYPOINT_NAVIGATION mode\n");
break;
case WAYPOINT_NAVIGATION_DYNAMIC:
DEBUG_PRINT("WAYPOINT_NAVIGATION_DYNAMIC mode\n");
break;
case FIGURE_EIGHT:
DEBUG_PRINT("FIGURE_EIGHT mode\n");
break;
}
}
if(prev_set_motors && !set_motors){
DEBUG_PRINT("Controller deactivated\n");
for(uint8_t i=0; i<4; i++){
motorsSetRatio(motors[i], 0);
}
}
relative_pos[0] = state->position.x - origin[0];
relative_pos[1] = state->position.y - origin[1];
relative_pos[2] = state->position.z - origin[2];
target_vel[0] = 0;
target_vel[1] = 0;
target_vel[2] = 0;
switch(mode){
case NORMAL:
switch(setpoint->mode.x){
case modeAbs:
target_pos[0] = setpoint->position.x;
target_vel[0] = 0;
break;
case modeVelocity:
target_pos[0] = state->position.x - setpoint->velocity.x * velocity_cmd_p_term;
target_vel[0] = setpoint->velocity.x * velocity_cmd_multiplier;
break;
case modeDisable:
target_pos[0] = origin[0];
target_vel[0] = 0;
break;
}
switch(setpoint->mode.y){
case modeAbs:
target_pos[1] = setpoint->position.y;
target_vel[1] = 0;
break;
case modeVelocity:
target_pos[1] = state->position.y - setpoint->velocity.y * velocity_cmd_p_term;
target_vel[1] = setpoint->velocity.y * velocity_cmd_multiplier;
break;
case modeDisable:
target_pos[1] = origin[1];
target_vel[1] = 0;
break;
}
switch(setpoint->mode.z){
case modeAbs:
target_pos[2] = setpoint->position.z;
target_vel[2] = 0;
break;
case modeVelocity:
target_pos[2] = state->position.z - setpoint->velocity.z * velocity_cmd_p_term;
target_vel[2] = setpoint->velocity.z * velocity_cmd_multiplier;
break;
case modeDisable:
target_pos[2] = origin[2];
target_vel[2] = 0;
break;
}
break;
case POSITION:
target_pos[0] = origin[0];
target_pos[1] = origin[1];
target_pos[2] = origin[2];
break;
case WAYPOINT_NAVIGATION:
{
uint64_t elapsed_since_start = (now-waypoint_navigation_timestamp_start);
int current_point = (elapsed_since_start / ((int)(waypoint_navigation_point_duration * 1000 * 1000))) % WAYPOINT_NAVIGATION_NUMBER_OF_POINTS;
target_pos[0] = trajectory[current_point][0] * waypoint_navigation_trajectory_scale + origin[0];
target_pos[1] = trajectory[current_point][1] * waypoint_navigation_trajectory_scale + origin[1];
target_pos[2] = trajectory[current_point][2] * waypoint_navigation_trajectory_scale + origin[2];
}
break;
case WAYPOINT_NAVIGATION_DYNAMIC:
{
float x = relative_pos[0] - trajectory[waypoint_navigation_dynamic_current_waypoint][0];
float y = relative_pos[1] - trajectory[waypoint_navigation_dynamic_current_waypoint][1];
float z = relative_pos[2] - trajectory[waypoint_navigation_dynamic_current_waypoint][2];
float current_dist = sqrtf(x*x + y*y + z*z);
if(current_dist < waypoint_navigation_dynamic_threshold){
waypoint_navigation_dynamic_current_waypoint = (waypoint_navigation_dynamic_current_waypoint + 1) % WAYPOINT_NAVIGATION_NUMBER_OF_POINTS;
DEBUG_PRINT("Next waypoint %d, [%f, %f, %f]\n", waypoint_navigation_dynamic_current_waypoint, trajectory[waypoint_navigation_dynamic_current_waypoint][0], trajectory[waypoint_navigation_dynamic_current_waypoint][1], trajectory[waypoint_navigation_dynamic_current_waypoint][2]);
}
target_pos[0] = origin[0] + trajectory[waypoint_navigation_dynamic_current_waypoint][0];
target_pos[1] = origin[1] + trajectory[waypoint_navigation_dynamic_current_waypoint][1];
target_pos[2] = origin[2] + trajectory[waypoint_navigation_dynamic_current_waypoint][2];
}
break;
case FIGURE_EIGHT:
{
float t = (now - timestamp_controller_activation) / 1000000.0f;
float dt = (now - figure_eight_last_invocation) / 1000000.0f;
float target_speed = 1/figure_eight_interval;
float speed = target_speed;
if(t < figure_eight_warmup_time){
speed = target_speed * t/figure_eight_warmup_time;
}
figure_eight_progress += dt * speed;
float progress = figure_eight_progress;
target_pos[0] = origin[0] + cosf(progress*2*M_PI + M_PI / 2) * figure_eight_scale;
target_vel[0] = -sinf(progress*2*M_PI + M_PI / 2) * figure_eight_scale * 2 * M_PI * speed;
target_pos[1] = origin[1] + sinf(2*(progress*2*M_PI + M_PI / 2)) / 2.0f * figure_eight_scale;
target_vel[1] = cosf(2*(progress*2*M_PI + M_PI / 2)) / 2.0f * figure_eight_scale * 4 * M_PI * speed;
target_pos[2] = origin[2];
figure_eight_last_invocation = now;
}
break;
}
pos_error[0] = target_pos[0] - state->position.x;
pos_error[1] = target_pos[1] - state->position.y;
pos_error[2] = target_pos[2] - state->position.z;
trigger_every(controller_tick);
prev_set_motors = set_motors;
prev_pre_set_motors = pre_set_motors;
if(tick % CONTROL_INTERVAL_MS == 0){
update_state(sensors, state);
{
int64_t before = usecTimestamp();
if(use_orig_controller == 0){
rl_tools_control(state_input, action_output);
}
else{
action_output[0] = -0.8;
action_output[1] = -0.8;
action_output[2] = -0.8;
action_output[3] = -0.8;
}
int64_t after = usecTimestamp();
if (tick % (CONTROL_INTERVAL_MS * 10000) == 0){
DEBUG_PRINT("rl_tools_control took %lldus\n", after - before);
}
}
for(uint8_t i=0; i<4; i++){
if (tick % (CONTROL_INTERVAL_MS * 1000) == 0){
DEBUG_PRINT("action_output[%d]: %f\n", i, action_output[i]);
}
float a_pp = (action_output[i] + 1)/2;
float des_rpm = (MAX_RPM - MIN_RPM) * a_pp + MIN_RPM;
float des_percentage = des_rpm / MAX_RPM;
motor_cmd[i] = des_percentage * UINT16_MAX;
if(set_motors && use_orig_controller == 0){
motorsSetRatio(motors[i], clip((float)motor_cmd[i] / motor_cmd_divider, 0, UINT16_MAX));
}
}
int64_t spare_time = CONTROL_INTERVAL_US - (now - timestamp_last_reset) ;
if(spare_time < 0 && (now - timestamp_last_behind_schedule_message > BEHIND_SCHEDULE_MESSAGE_MIN_INTERVAL)){
DEBUG_PRINT("Learned Controller is behind schedule: %lldus/%dus\n", (int64_t)(now-timestamp_last_reset), CONTROL_INTERVAL_US);
timestamp_last_behind_schedule_message = now;
}
timestamp_last_reset = usecTimestamp();
}
if(!set_motors){
if(pre_set_motors){
for(uint8_t i=0; i<4; i++){
motorsSetRatio(motors[i], UINT16_MAX / motor_cmd_divider_warmup);
}
}
else{
controllerPid(control, setpoint, sensors, state, tick);
powerDistribution(control, &motorThrustUncapped);
batteryCompensation(&motorThrustUncapped, &motorThrustBatCompUncapped);
powerDistributionCap(&motorThrustBatCompUncapped, &motorPwm);
setMotorRatios(&motorPwm);
}
}
else{
if(use_orig_controller >= 1){
setpoint->mode.x = modeAbs;
setpoint->mode.y = modeAbs;
setpoint->mode.z = modeAbs;
setpoint->mode.yaw = modeAbs;
setpoint->mode.pitch = modeDisable;
setpoint->mode.roll = modeDisable;
setpoint->mode.quat = modeDisable;
setpoint->position.x = target_pos[0];
setpoint->position.y = target_pos[1];
setpoint->position.z = target_pos[2];
setpoint->velocity.x = target_vel[0];
setpoint->velocity.y = target_vel[1];
setpoint->velocity.z = target_vel[2];
setpoint->acceleration.x = 0;
setpoint->acceleration.y = 0;
setpoint->acceleration.z = 0;
setpoint->attitude.yaw = 0;
setpoint->attitude.pitch = 0;
setpoint->attitude.roll = 0;
setpoint->attitudeQuaternion.w = 1;
setpoint->attitudeQuaternion.x = 0;
setpoint->attitudeQuaternion.y = 0;
setpoint->attitudeQuaternion.z = 0;
setpoint->attitudeRate.yaw = 0;
setpoint->attitudeRate.pitch = 0;
setpoint->attitudeRate.roll = 0;
setpoint->timestamp = xTaskGetTickCount();
if(use_orig_controller == 1){
controllerPid(control, setpoint, sensors, state, tick);
}
else{
if(use_orig_controller == 2){
setpoint->position.x = state->position.x + clip(target_pos[0] - state->position.x, -pos_distance_limit_mellinger, pos_distance_limit_mellinger);
setpoint->position.y = state->position.y + clip(target_pos[1] - state->position.y, -pos_distance_limit_mellinger, pos_distance_limit_mellinger);
setpoint->position.z = state->position.z + clip(target_pos[2] - state->position.z, -pos_distance_limit_mellinger, pos_distance_limit_mellinger);
setpoint->velocity.x = state->velocity.x + clip(target_vel[0] - state->velocity.x, -vel_distance_limit_mellinger, vel_distance_limit_mellinger);
setpoint->velocity.y = state->velocity.y + clip(target_vel[1] - state->velocity.y, -vel_distance_limit_mellinger, vel_distance_limit_mellinger);
setpoint->velocity.z = state->velocity.z + clip(target_vel[2] - state->velocity.z, -vel_distance_limit_mellinger, vel_distance_limit_mellinger);
controllerMellingerFirmware(control, setpoint, sensors, state, tick);
}
else{
if(use_orig_controller == 3){
controllerINDI(control, setpoint, sensors, state, tick);
}
else{
setpoint->position.x = state->position.x + clip(target_pos[0] - state->position.x, -pos_distance_limit_bresciani, pos_distance_limit_bresciani);
setpoint->position.y = state->position.y + clip(target_pos[1] - state->position.y, -pos_distance_limit_bresciani, pos_distance_limit_bresciani);
setpoint->position.z = state->position.z + clip(target_pos[2] - state->position.z, -pos_distance_limit_bresciani, pos_distance_limit_bresciani);
setpoint->velocity.x = state->velocity.x + clip(target_vel[0] - state->velocity.x, -vel_distance_limit_bresciani, vel_distance_limit_bresciani);
setpoint->velocity.y = state->velocity.y + clip(target_vel[1] - state->velocity.y, -vel_distance_limit_bresciani, vel_distance_limit_bresciani);
setpoint->velocity.z = state->velocity.z + clip(target_vel[2] - state->velocity.z, -vel_distance_limit_bresciani, vel_distance_limit_bresciani);
controllerBrescianini(control, setpoint, sensors, state, tick);
}
}
}
powerDistribution(control, &motorThrustUncapped);
batteryCompensation(&motorThrustUncapped, &motorThrustBatCompUncapped);
powerDistributionCap(&motorThrustBatCompUncapped, &motorPwm);
setMotorRatios(&motorPwm);
}
}
controller_tick++;
}
PARAM_GROUP_START(rlt)
PARAM_ADD(PARAM_UINT8, trigger, &trigger_mode)
PARAM_ADD(PARAM_UINT8, motor_warmup, &use_pre_set_warmup)
PARAM_ADD(PARAM_FLOAT, motor_div, &motor_cmd_divider)
PARAM_ADD(PARAM_FLOAT, motor_div_wu, &motor_cmd_divider_warmup)
PARAM_ADD(PARAM_FLOAT, target_z, &target_height)
PARAM_ADD(PARAM_FLOAT, target_z_fe, &target_height_figure_eight)
PARAM_ADD(PARAM_UINT8, smo, &set_motors_overwrite)
PARAM_ADD(PARAM_UINT8, ht, &hand_test)
PARAM_ADD(PARAM_UINT8, wn, &mode)
PARAM_ADD(PARAM_FLOAT, ts, &waypoint_navigation_trajectory_scale)
PARAM_ADD(PARAM_FLOAT, wpt, &waypoint_navigation_dynamic_threshold)
PARAM_ADD(PARAM_FLOAT, wni, &waypoint_navigation_point_duration)
PARAM_ADD(PARAM_FLOAT, fewt, &figure_eight_warmup_time)
PARAM_ADD(PARAM_FLOAT, fei, &figure_eight_interval)
PARAM_ADD(PARAM_FLOAT, fes, &figure_eight_scale)
PARAM_ADD(PARAM_FLOAT, pdlp, &pos_distance_limit_position)
PARAM_ADD(PARAM_FLOAT, pdlfe, &pos_distance_limit_figure_eight)
PARAM_ADD(PARAM_FLOAT, vdlp, &vel_distance_limit_position)
PARAM_ADD(PARAM_FLOAT, vdlfe, &vel_distance_limit_figure_eight)
PARAM_ADD(PARAM_FLOAT, pdlm, &pos_distance_limit_mellinger)
PARAM_ADD(PARAM_FLOAT, vdlm, &vel_distance_limit_mellinger)
PARAM_ADD(PARAM_UINT8, orig, &use_orig_controller)
PARAM_ADD(PARAM_UINT8, mei, &mellinger_enable_integrators)
PARAM_ADD(PARAM_FLOAT, vcmdm, &velocity_cmd_multiplier)
PARAM_ADD(PARAM_FLOAT, vcmdp, &velocity_cmd_p_term)
PARAM_GROUP_STOP(rlt)
LOG_GROUP_START(rltm)
LOG_ADD(LOG_UINT16, m1, &motor_cmd[0])
LOG_ADD(LOG_UINT16, m2, &motor_cmd[1])
LOG_ADD(LOG_UINT16, m3, &motor_cmd[2])
LOG_ADD(LOG_UINT16, m4, &motor_cmd[3])
LOG_GROUP_STOP(rltm)
LOG_GROUP_START(rltrp)
LOG_ADD(LOG_FLOAT, x, &relative_pos[0])
LOG_ADD(LOG_FLOAT, y, &relative_pos[1])
LOG_ADD(LOG_FLOAT, z, &relative_pos[2])
LOG_ADD(LOG_UINT8, sm, &log_set_motors)
LOG_GROUP_STOP(rltrp)
LOG_GROUP_START(rlttp)
LOG_ADD(LOG_FLOAT, x, &target_pos[0])
LOG_ADD(LOG_FLOAT, y, &target_pos[1])
LOG_ADD(LOG_FLOAT, z, &target_pos[2])
LOG_GROUP_STOP(rltrp)
LOG_GROUP_START(rltte)
LOG_ADD(LOG_FLOAT, x, &pos_error[0])
LOG_ADD(LOG_FLOAT, y, &pos_error[1])
LOG_ADD(LOG_FLOAT, z, &pos_error[2])
LOG_GROUP_STOP(rltre)