-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv-rsnn.py
549 lines (442 loc) · 17.6 KB
/
conv-rsnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import argparse
import os
from time import time as t
from eagerpy import ones
import logging
import json
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from tqdm import tqdm
from bindsnet.analysis.plotting import (
plot_conv2d_weights,
plot_input,
plot_spikes,
plot_voltages,
plot_weights,
)
from bindsnet.datasets import MNIST
from bindsnet.encoding import PoissonEncoder
from bindsnet.learning import PostPre, WeightDependentPostPre, MSTDP, MSTDPET, Rmax
from bindsnet.network import Network
from bindsnet.network.monitors import Monitor
from bindsnet.network.nodes import DiehlAndCookNodes, Input, LIFNodes, AdaptiveLIFNodes, MaxPool2dLIFNodes
from bindsnet.network.topology import Connection, Conv2dConnection, MaxPool2dConnection, GlobalMaxPoolConnection, SparseConnection
from bindsnet.pipeline import EnvironmentPipeline
from bindsnet.pipeline.action import select_softmax
print()
formatter = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
torch.set_printoptions(threshold=torch.nan)
def setup_logger(name, log_file, level=logging.INFO):
"""To setup as many loggers as you want"""
handler = logging.FileHandler(log_file)
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(handler)
return logger
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--n_epochs", type=int, default=1)
parser.add_argument("--n_test", type=int, default=10000)
parser.add_argument("--n_train", type=int, default=60000)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--kernel_size", type=int, default=8)
parser.add_argument("--stride", type=int, default=2)
parser.add_argument("--dilation", type=int, default=1)
parser.add_argument("--n_filters", type=int, default=30)
parser.add_argument("--padding", type=int, default=0)
parser.add_argument("--time", type=int, default=50)
parser.add_argument("--dt", type=int, default=1.0)
parser.add_argument("--intensity", type=float, default=128.0)
parser.add_argument("--progress_interval", type=int, default=10)
parser.add_argument("--update_interval", type=int, default=250)
parser.add_argument("--train", dest="train", action="store_true")
parser.add_argument("--test", dest="train", action="store_false")
parser.add_argument("--plot", dest="plot", action="store_true")
parser.add_argument("--gpu", dest="gpu", action="store_true")
parser.set_defaults(plot=True, gpu=True, train=True)
args = parser.parse_args()
seed = args.seed
n_epochs = args.n_epochs
n_test = args.n_test
n_train = args.n_train
batch_size = args.batch_size
kernel_size = args.kernel_size
stride = args.stride
dilation=args.dilation
n_filters = args.n_filters
padding = args.padding
time = args.time
dt = args.dt
intensity = args.intensity
progress_interval = args.progress_interval
update_interval = args.update_interval
train = args.train
plot = args.plot
gpu = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if gpu and torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
else:
torch.manual_seed(seed)
device = "cpu"
if gpu:
gpu = False
torch.set_num_threads(os.cpu_count() - 1)
print("Running on Device = ", device)
if not train:
update_interval = n_test
conv_size = int((28 - kernel_size + 2 * padding) / stride) + 1
per_class = int((n_filters * conv_size * conv_size) / 10)
c_num = list(range(0, 2)) # kelasaye morede niaz
# Build network.
network = Network()
input_layer = Input(n=784, shape=(1, 28, 28), traces=True)
conv_layer = LIFNodes(
n=n_filters * conv_size * conv_size,
shape=(n_filters, conv_size, conv_size),
traces=True,
)
conv_conn = Conv2dConnection(
input_layer,
conv_layer,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
#update_rule=PostPre,
norm=0.4 * kernel_size**2,
nu=[1e-4, 1e-2],
wmax=1.0,
wmin=0,
)
conv_conn.w = torch.load('weights1.pt') # load pretrained conv2d weights using STDP
out_layer = MaxPool2dLIFNodes(
n=n_filters,
shape=(n_filters, 1, 1),
)
out_conn = GlobalMaxPoolConnection(
source=conv_layer,
target=out_layer,
)
w = torch.zeros(n_filters, conv_size, conv_size, n_filters, conv_size, conv_size)
for fltr1 in range(n_filters):
for fltr2 in range(n_filters):
if fltr1 != fltr2:
for i in range(conv_size):
for j in range(conv_size):
w[fltr1, i, j, fltr2, i, j] = -100.0
w = w.view(n_filters * conv_size * conv_size, n_filters * conv_size * conv_size)
recurrent_conn = Connection(conv_layer, conv_layer, w=w)
lif_layer = LIFNodes(
n=40, # 200
#shape=(1, 1, n_filters),
shape=(40, 1),
traces=True,
)
dim = torch.Size([lif_layer.n, lif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=1
lif_lif_conn = Connection(lif_layer,lif_layer, w=w)
dim = torch.Size([out_layer.n, lif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9) #0.95
w[w != 0]=1
o_lif_conn = Connection(
out_layer,
lif_layer,
w=w, #, w=torch.ones(dim)
wmin=0, # minimum weight value
wmax=1, # maximum weight value
update_rule=MSTDPET, # learning rule
nu=1e-1, # learning rate
norm=0.5 * lif_layer.n, # normalization)
)
alif_layer = AdaptiveLIFNodes(
n=20, #100
#shape=(1, 1, n_filters),
shape=(20, 1),
traces=True,
)
dim = torch.Size([alif_layer.n, alif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=1
alif_alif_conn = Connection(alif_layer,alif_layer, w=w)
dim = torch.Size([out_layer.n, alif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9) #0.95
w[w != 0]=1
o_alif_conn = Connection(
out_layer,
alif_layer,
w=w, #, w=torch.ones(dim)
wmin=0, # minimum weight value
wmax=1, # maximum weight value
update_rule=MSTDPET, # learning rule
nu=1e-1, # learning rate
norm=0.5 * alif_layer.n, # normalization)#, w=torch.ones(dim)
)
inhibitory_layer = LIFNodes(
n=20, #100
#shape=(1, 1, n_filters),
shape=(20, 1),
traces=True,
)
dim = torch.Size([inhibitory_layer.n, inhibitory_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=1
inhibitory_inhibitory_conn = Connection(inhibitory_layer,inhibitory_layer, w=w)
dim = torch.Size([out_layer.n, inhibitory_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9) #0.95
w[w != 0]=1
o_inhibitory_conn = Connection(
out_layer,
inhibitory_layer,
w=w, #, w=torch.ones(dim)
wmin=0, # minimum weight value
wmax=1, # maximum weight value
update_rule=MSTDPET, # learning rule
nu=1e-1, # learning rate
norm=0.5 * inhibitory_layer.n, # normalization)#, w=torch.ones(dim)
)
dim = torch.Size([lif_layer.n, alif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=1
lif_alif_conn = Connection(lif_layer,alif_layer, w=w)
dim = torch.Size([alif_layer.n, lif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=1
alif_lif_conn = Connection(alif_layer,lif_layer, w=w)
dim = torch.Size([lif_layer.n, inhibitory_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=1
lif_inhibitory_conn = Connection(lif_layer,inhibitory_layer, w=w)
dim = torch.Size([inhibitory_layer.n, lif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=-1
inhibitory_lif_conn = Connection(inhibitory_layer,lif_layer, w=w)
dim = torch.Size([alif_layer.n, inhibitory_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=1
alif_inhibitory_conn = Connection(alif_layer,inhibitory_layer, w=w)
dim = torch.Size([inhibitory_layer.n, alif_layer.n])
w = torch.nn.init.sparse_(torch.Tensor(dim), sparsity=0.9)
w[w != 0]=-1
inhibitory_alif_conn = Connection(inhibitory_layer,alif_layer, w=w)
pred_layer = LIFNodes(
n=10*len(c_num),
#shape=(1, 1, n_filters),
shape=(10*len(c_num), 1),
traces=True,
)
lif_pred_conn = Connection(
lif_layer,
pred_layer,
w = torch.multiply((0.05 + torch.randn(lif_layer.n, pred_layer.n)), torch.empty(lif_layer.n, pred_layer.n).random_(2)),
wmin=0, # minimum weight value
wmax=1, # maximum weight value
update_rule=MSTDPET, # learning rule
nu=1e-1, # learning rate
norm=0.5 * lif_layer.n, # normalization
)
alif_pred_conn = Connection(
alif_layer,
pred_layer,
w = torch.multiply((0.05 + torch.randn(alif_layer.n, pred_layer.n)), torch.empty(alif_layer.n, pred_layer.n).random_(2)),
wmin=0, # minimum weight value
wmax=1, # maximum weight value
update_rule=MSTDPET, # learning rule
nu=1e-1, # learning rate
norm=0.5 * alif_layer.n, # normalization
)
inhibitory_pred_conn = Connection(
inhibitory_layer,
pred_layer,
w = torch.multiply((0.05 + torch.randn(inhibitory_layer.n, pred_layer.n)), torch.empty(inhibitory_layer.n, pred_layer.n).random_(2)),
wmin=0, # minimum weight value
wmax=1, # maximum weight value
update_rule=MSTDPET, # learning rule
nu=1e-1, # learning rate
norm=0.5 * inhibitory_layer.n, # normalization
)
# lateral connection
w = torch.kron(torch.eye(len(c_num)),torch.ones([10, 10]))
w[w == 0] = -1
#w[w == 1] = 0 # in khate mitune nabashe
pred_pred_conn = Connection(pred_layer, pred_layer, w=w) # w = -1 * (torch.ones(pred_layer.n, pred_layer.n).fill_diagonal_(-1))
network.add_layer(input_layer, name="X")
network.add_layer(conv_layer, name="Y")
network.add_layer(out_layer, name="O")
network.add_layer(lif_layer, name="E")
network.add_layer(alif_layer, name="A")
network.add_layer(inhibitory_layer, name="I")
network.add_layer(pred_layer, name="P")
network.add_connection(out_conn, source="Y", target="O")
network.add_connection(conv_conn, source="X", target="Y")
network.add_connection(recurrent_conn, source="Y", target="Y")
network.add_connection(o_lif_conn, source="O", target="E")
network.add_connection(o_alif_conn, source="O", target="A")
network.add_connection(o_inhibitory_conn, source="O", target="I")
network.add_connection(lif_lif_conn, source="E", target="E")
network.add_connection(alif_alif_conn, source="A", target="A")
network.add_connection(inhibitory_inhibitory_conn, source="I", target="I")
network.add_connection(lif_alif_conn, source="E", target="A")
network.add_connection(alif_lif_conn, source="A", target="E")
network.add_connection(lif_inhibitory_conn, source="E", target="I")
network.add_connection(inhibitory_lif_conn, source="I", target="E")
network.add_connection(alif_inhibitory_conn, source="A", target="I")
network.add_connection(inhibitory_alif_conn, source="I", target="A")
network.add_connection(lif_pred_conn, source="E", target="P")
network.add_connection(alif_pred_conn, source="A", target="P")
network.add_connection(inhibitory_pred_conn, source="I", target="P")
network.add_connection(pred_pred_conn, source="P", target="P")
# Voltage recording for excitatory and inhibitory layers.
voltage_monitor = Monitor(network.layers["Y"], ["v"], time=time)
network.add_monitor(voltage_monitor, name="output_voltage")
if gpu:
network.to("cuda")
# Load MNIST data.
train_dataset = MNIST(
PoissonEncoder(time=time, dt=dt),
None,
"../../data/MNIST",
download=True,
train=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Lambda(lambda x: x * intensity)]
),
)
spikes = {}
for layer in set(network.layers):
spikes[layer] = Monitor(network.layers[layer], state_vars=["s"], time=time)
network.add_monitor(spikes[layer], name="%s_spikes" % layer)
voltages = {}
for layer in set(network.layers) - {"X"}:
voltages[layer] = Monitor(network.layers[layer], state_vars=["v"], time=time)
network.add_monitor(voltages[layer], name="%s_voltages" % layer)
# Train the network.
print("Begin training.\n")
start = t()
inpt_axes = None
inpt_ims = None
spike_ims = None
spike_axes = None
weights1_im = None
voltage_ims = None
voltage_axes = None
json_string = """
[]
"""
json.dump( json.loads(json_string), open( "spiking_mnist.json", 'w' ) )
total_reward = 0
rewards = torch.zeros(time)
reward = 0
wn_mean=0
wn_std=7
for epoch in range(n_epochs):
if epoch % progress_interval == 0:
print("Progress: %d / %d (%.4f seconds)" % (epoch, n_epochs, t() - start))
start = t()
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
pin_memory=gpu,
)
for step, batch in enumerate(tqdm(train_dataloader)):
# Get next input sample. inaro dadam jolo bara if
if step > n_train:
break
inputs = {"X": batch["encoded_image"].view(time, batch_size, 1, 28, 28)}
if gpu:
inputs = {k: v.cuda() for k, v in inputs.items()}
label = batch["label"]
if (label.item() in c_num):
if reward > 0 and wn_std > 0.001:
wn_std -= 0.005 # 0.001
reward = 0
#print("Input shape: " + str(inputs['X'].shape))
print("Initial reward: " + str(reward))
print("White noise std: " + str(wn_std))
wn = torch.normal(mean=wn_mean, std=wn_std, size=(time , 1, pred_layer.n, 1))
# Run the network on the input.
network.run(inputs=inputs, time=time, input_time_dim=1, reward=reward, injects_v={"P": wn.to(device)})
#input_layer.reset_state_variables()
#conv_layer.reset_state_variables()
#out_layer.reset_state_variables()
#logger_o = setup_logger('out_layer', 'out_layer.log')
#logger_o.info(out_layer.s.float().squeeze())
#logger_p = setup_logger('pred_layer', 'pred_layer.log')
#logger_p.info("step: " + str(step) + " " + str(voltages["P"].get("v").float().squeeze()))
pred_firing_rate = spikes["P"].get("s").float().squeeze().T.sum(axis=1)
print("pred_layer firing rate: " + str(pred_firing_rate))
p = torch.where(pred_firing_rate == torch.amax(pred_firing_rate))[0]
#print("Index of spiking neurons: " + str(p))
#if len(p) > 1 and torch.all(pred_firing_rate == 0):
# reward = 0
#elif len(p) > 1 and not(torch.all(pred_firing_rate == 0)):
# reward = -1
#elif p.item() == label.item():
# reward = 1
#elif p.item() != label.item():
# reward = -1
# rewarding policy for pred_layer.n=100
m = torch.zeros(len(c_num), dtype=torch.bool)
for i in range(len(p)):
m[int(p[i] / 10)] = True
c = torch.where(m == True)[0]
print("Predicted classes: " + str(c))
print("Label: " + str(label.item())) # print(label.data[0])
if len(c) > 1 and torch.all(pred_firing_rate == 0):
reward = 0
elif len(c) > 1 and not(torch.all(pred_firing_rate == 0)):
reward = -1
elif c.item() == label.item():
reward = 1
elif c.item() != label.item():
reward = -1
total_reward += reward
#print("reward = " + str(reward) + ", total_reward = " + str(total_reward))
# Update network with cumulative reward
if network.reward_fn is not None:
network.reward_fn.update(accumulated_reward=total_reward)
# reset the network before updating the reward (test)
network.reset_state_variables()
print("Updated reward: " + str(reward))
# Update network with new reward
network.run(inputs=inputs, time=time, input_time_dim=1, reward=reward)
# Optionally plot various simulation information.
if plot and batch_size == 1:
image = batch["image"].view(28, 28)
inpt = inputs["X"].view(time, 784).sum(0).view(28, 28)
weights1 = conv_conn.w
_spikes = {
"X": spikes["X"].get("s").view(time, -1),
"Y": spikes["Y"].get("s").view(time, -1),
"O": spikes["O"].get("s").view(time, -1) ,
"E": spikes["E"].get("s").view(time, -1),
"A": spikes["A"].get("s").view(time, -1),
"I": spikes["I"].get("s").view(time, -1),
"P": spikes["P"].get("s").view(time, -1),
}
_voltages = {"Y": voltages["Y"].get("v").view(time, -1)}
inpt_axes, inpt_ims = plot_input(
image, inpt, label=label, axes=inpt_axes, ims=inpt_ims
)
spike_ims, spike_axes = plot_spikes(_spikes, ims=spike_ims, axes=spike_axes)
weights1_im = plot_conv2d_weights(weights1, im=weights1_im)
voltage_ims, voltage_axes = plot_voltages(
_voltages, ims=voltage_ims, axes=voltage_axes
)
plt.pause(1)
#print("step: " + str(step))
if step < 60000:
with open('spiking_mnist.json', "r+") as file:
data = json.load(file)
data.append({"data": spikes["O"].get("s").float().squeeze().tolist(), "label": label.item()})
file.seek(0)
json.dump(data, file)
# torch.save(weights1, 'weights1.pt')
# print("weights1 saved to file successfully!")
network.reset_state_variables() # Reset state variables.
print("Progress: %d / %d (%.4f seconds)\n" % (n_epochs, n_epochs, t() - start))
print("Training complete.\n")