You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@article{pessa2021ordpy,
title = {ordpy: A Python package for data analysis with permutation entropy and ordinal network methods},
author = {Arthur A. B. Pessa and Haroldo V. Ribeiro},
journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science},
volume = {31},
number = {6},
pages = {063110},
year = {2021},
doi = {10.1063/5.0049901},
}
ordpy implements the following data analysis methods:
Released on version 1.0 (February 2021):
Permutation entropy for time series [2] and images [3];
Complexity-entropy plane for time series [4], [5] and
images [3];
Multiscale complexity-entropy plane for time series [6] and
images [7];
Tsallis [8] and Rényi [9] generalized complexity-entropy
curves for time series and images;
Ordinal networks for time series [10], [11] and
images [12];
Global node entropy of ordinal networks for
time series [13], [11] and images [12].
Missing ordinal patterns [14] and missing transitions between ordinal
patterns [11] for time series and images.
Released on version 1.1.0 (January 2023):
Weighted permutation entropy for time series [15] and images;
Fisher-Shannon plane for time series [16] and images;
Permutation Jensen-Shannon distance for time series [17] and images;
Four pattern permutation contrasts (up-down balance, persistence,
rotational-asymmetry, and up-down scaling.) for time series [18];
We provide a notebook
illustrating how to use ordpy. This notebook reproduces all figures of our
article [1]. The code below shows simple applications of ordpy.
Pull requests addressing errors or adding new functionalities are always welcome.
References
[1]
(1, 2, 3) Pessa, A. A. B., & Ribeiro, H. V. (2021). ordpy: A Python package
for data analysis with permutation entropy and ordinal networks methods.
Chaos, 31, 063110.
[2]
(1, 2) Bandt, C., & Pompe, B. (2002). Permutation entropy: A Natural
Complexity Measure for Time Series. Physical Review Letters, 88, 174102.
[3]
(1, 2) Ribeiro, H. V., Zunino, L., Lenzi, E. K., Santoro, P. A., &
Mendes, R. S. (2012). Complexity-Entropy Causality Plane as a Complexity
Measure for Two-Dimensional Patterns. PLOS ONE, 7, e40689.
Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., &
Fuentes, M. A. (2007). Distinguishing Noise from Chaos. Physical Review
Letters, 99, 154102.
Zunino, L., Soriano, M. C., & Rosso, O. A. (2012).
Distinguishing Chaotic and Stochastic Dynamics from Time Series by Using
a Multiscale Symbolic Approach. Physical Review E, 86, 046210.
Ribeiro, H. V., Jauregui, M., Zunino, L., & Lenzi, E. K.
(2017). Characterizing Time Series Via Complexity-Entropy Curves.
Physical Review E, 95, 062106.
Jauregui, M., Zunino, L., Lenzi, E. K., Mendes, R. S., &
Ribeiro, H. V. (2018). Characterization of Time Series via Rényi
Complexity-Entropy Curves. Physica A, 498, 74-85.
Small, M. (2013). Complex Networks From Time Series: Capturing
Dynamics. In 2013 IEEE International Symposium on Circuits and Systems
(ISCAS2013) (pp. 2509-2512). IEEE.
[11]
(1, 2, 3) Pessa, A. A. B., & Ribeiro, H. V. (2019). Characterizing Stochastic
Time Series With Ordinal Networks. Physical Review E, 100, 042304.
[12]
(1, 2) Pessa, A. A. B., & Ribeiro, H. V. (2020). Mapping Images Into
Ordinal Networks. Physical Review E, 102, 052312.
McCullough, M., Small, M., Iu, H. H. C., & Stemler, T. (2017).
Multiscale Ordinal Network Analysis of Human Cardiac Dynamics.
Philosophical Transactions of the Royal Society A, 375, 20160292.
Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2007).
True and False Forbidden Patterns in Deterministic and Random Dynamics.
Europhysics Letters, 79, 50001.
Fadlallah B., Chen, B., Keil A. & Príncipe, J. (2013).
Weighted-permutation entropy: a complexity measure for time series
incorporating amplitude information. Physical Review E, 97, 022911.
Olivares, F., Plastino, A., & Rosso, O. A. (2012).
Contrasting chaos with noise via local versus global
information quantifiers. Physics Letters A, 376, 1577–1583.
Zunino L., Olivares, F., Ribeiro H. V. & Rosso, O. A. (2022).
Permutation Jensen-Shannon distance: A versatile and fast symbolic tool
for complex time-series analysis. Physical Review E, 105, 045310.