forked from coreylowman/dfdx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07-custom-module.rs
101 lines (89 loc) · 3.53 KB
/
07-custom-module.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
//! Demonstrates how to build a custom [nn::Module] without using tuples
use dfdx::{
nn::modules::{Linear, Module, ModuleVisitor, ReLU, TensorCollection},
prelude::BuildModule,
shapes::{Dtype, Rank1, Rank2},
tensor::{AutoDevice, SampleTensor, Tape, Tensor, Trace},
tensor_ops::Device,
};
/// Custom model struct
/// This case is trivial and should be done with a tuple of linears and relus,
/// but it demonstrates how to build models with custom behavior
struct Mlp<const IN: usize, const INNER: usize, const OUT: usize, E: Dtype, D: Device<E>> {
l1: Linear<IN, INNER, E, D>,
l2: Linear<INNER, OUT, E, D>,
relu: ReLU,
}
// TensorCollection lets you do several operations on Modules, including constructing them with
// randomized parameters, and iterating through or mutating all tensors in a model.
impl<const IN: usize, const INNER: usize, const OUT: usize, E, D: Device<E>> TensorCollection<E, D>
for Mlp<IN, INNER, OUT, E, D>
where
E: Dtype + num_traits::Float + rand_distr::uniform::SampleUniform,
{
// Type alias that specifies the how Mlp's type changes when using a different dtype and/or
// device.
type To<E2: Dtype, D2: Device<E2>> = Mlp<IN, INNER, OUT, E2, D2>;
fn iter_tensors<V: ModuleVisitor<Self, E, D>>(
visitor: &mut V,
) -> Result<Option<Self::To<V::E2, V::D2>>, V::Err> {
visitor.visit_fields(
(
// Define name of each field and how to access it, using ModuleField for Modules,
// and TensorField for Tensors.
Self::module("l1", |s| &s.l1, |s| &mut s.l1),
Self::module("l2", |s| &s.l2, |s| &mut s.l2),
),
// Define how to construct the collection given its fields in the order they are given
// above. This conversion is done using the ModuleFields trait.
|(l1, l2)| Mlp {
l1,
l2,
relu: Default::default(),
},
)
}
}
// impl Module for single item
impl<const IN: usize, const INNER: usize, const OUT: usize, E: Dtype, D: Device<E>>
Module<Tensor<Rank1<IN>, E, D>> for Mlp<IN, INNER, OUT, E, D>
{
type Output = Tensor<Rank1<OUT>, E, D>;
type Error = D::Err;
fn try_forward(&self, x: Tensor<Rank1<IN>, E, D>) -> Result<Self::Output, D::Err> {
let x = self.l1.try_forward(x)?;
let x = self.relu.try_forward(x)?;
self.l2.try_forward(x)
}
}
// impl Module for batch of items
impl<
const BATCH: usize,
const IN: usize,
const INNER: usize,
const OUT: usize,
E: Dtype,
D: Device<E>,
T: Tape<E, D>,
> Module<Tensor<Rank2<BATCH, IN>, E, D, T>> for Mlp<IN, INNER, OUT, E, D>
{
type Output = Tensor<Rank2<BATCH, OUT>, E, D, T>;
type Error = D::Err;
fn try_forward(&self, x: Tensor<Rank2<BATCH, IN>, E, D, T>) -> Result<Self::Output, D::Err> {
let x = self.l1.try_forward(x)?;
let x = self.relu.try_forward(x)?;
self.l2.try_forward(x)
}
}
fn main() {
// Rng for generating model's params
let dev = AutoDevice::default();
// Construct model
let model = Mlp::<10, 512, 20, f32, AutoDevice>::build(&dev);
// Forward pass with a single sample
let item: Tensor<Rank1<10>, f32, _> = dev.sample_normal();
let _: Tensor<Rank1<20>, f32, _> = model.forward(item);
// Forward pass with a batch of samples
let batch: Tensor<Rank2<32, 10>, f32, _> = dev.sample_normal();
let _: Tensor<Rank2<32, 20>, f32, _, _> = model.forward(batch.leaky_trace());
}