-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknapsack.go
223 lines (185 loc) · 4.88 KB
/
knapsack.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
package main
import (
// "bufio"
"fmt"
// "io"
"flag"
"log"
"math"
"os"
"sort"
)
type item struct {
value int
weight int
}
type ByValueWeightRatio []item
func (r ByValueWeightRatio) Len() int { return len(r) }
func (r ByValueWeightRatio) Swap(i, j int) { r[i], r[j] = r[j], r[i] }
func (r ByValueWeightRatio) Less(i, j int) bool {
c := float64(r[i].value)/float64(r[i].weight) -
float64(r[j].value)/float64(r[j].weight)
if c < 0 {
return true
}
return false
}
var best_so_far int
//#pragma omp threadprivate(number_of_tasks)
/*
func compare(a *item, b *item) int {
c := ((float64)(a.value) / (float64)(a.weight)) - ((float64)(b.value) / (float64)(b.weight))
if c > 0 {
return -1
}
if c < 0 {
return 1
}
return 0
}
*/
func read_input(filename string, items []item, capacity *int, n *int) {
file, err := os.Open(filename)
if err != nil {
log.Fatal(err)
return
}
/* format of the input: #items capacity\n value1 weight1\n ... */
fmt.Fscanf(file, "%d %d\n", n, capacity)
// fmt.Fscanf(file, "%d", capacity)
items = items[:*n]
for i := 0; i < *n; i++ {
fmt.Fscanf(file, "%d %d\n", &items[i].value, &items[i].weight)
}
file.Close()
/* sort the items on decreasing order of value/weight */
/* cilk2c is fascist in dealing with pointers, whence the ugly cast */
//qsort(items, *n, sizeof(struct item), (int (*)(const void *, const void *)) compare)
sort.Sort(ByValueWeightRatio(items))
}
/*
* return the optimal solution for n items (first is e) and
* capacity c. Value so far is v.
*/
func knapsack_par(items []item, c int, n int, v int, sol *int, l int) {
var with, without, best int
var ub float64
/* base case: full knapsack or no items */
if c < 0 {
*sol = math.MinInt32
return
}
/* feasible solution, with value v */
if n == 0 || c == 0 {
*sol = v
return
}
ub = float64(v) + float64(c*items[0].value)/float64(items[0].weight)
if ub < float64(best_so_far) {
/* prune ! */
*sol = math.MinInt32
return
}
/*
* compute the best solution without the current item in the knapsack
*/
// #pragma omp task untied firstprivate(items,c,n,v,l) shared(without)
knapsack_par(items[1:], c, n-1, v, &without, l+1)
/* compute the best solution with the current item in the knapsack */
// #pragma omp task untied firstprivate(items,c,n,v,l) shared(with)
knapsack_par(items[1:], c-items[0].weight, n-1, v+items[0].value, &with, l+1)
//#pragma omp taskwait
if with > without {
best = with
} else {
best = without
}
/*
* notice the race condition here. The program is still
* correct, in the sense that the best solution so far
* is at least best_so_far. Moreover best_so_far gets updated
* when returning, so eventually it should get the right
* value. The program is highly non-deterministic.
*/
if best > best_so_far {
best_so_far = best
}
*sol = best
}
func knapsack_seq(items []item, c int, n int, v int, sol *int) {
var with, without, best int
var ub float64
/* base case: full knapsack or no items */
if c < 0 {
*sol = math.MinInt32
return
}
/* feasible solution, with value v */
if n == 0 || c == 0 {
*sol = v
return
}
ub = float64(v) + float64(c*items[0].value)/float64(items[0].weight)
if ub < float64(best_so_far) {
/* prune ! */
*sol = math.MinInt32
return
}
/*
* compute the best solution without the current item in the knapsack
*/
knapsack_seq(items[1:], c, n-1, v, &without)
/* compute the best solution with the current item in the knapsack */
knapsack_seq(items[1:], c-items[0].weight, n-1, v+items[0].value, &with)
if with > without {
best = with
} else {
best = without
}
/*
* notice the race condition here. The program is still
* correct, in the sense that the best solution so far
* is at least best_so_far. Moreover best_so_far gets updated
* when returning, so eventually it should get the right
* value. The program is highly non-deterministic.
*/
if best > best_so_far {
best_so_far = best
}
*sol = best
}
func knapsack_main_par(items []item, c int, n int, sol *int) {
best_so_far = math.MinInt32
// #pragma omp parallel
{
// #pragma omp single
// #pragma omp task untied
{
knapsack_par(items, c, n, 0, sol, 0)
}
// #pragma omp critical
}
fmt.Println("Best value for parallel execution is", *sol)
}
func knapsack_main_seq(items []item, c int, n int, sol *int) {
best_so_far = math.MinInt32
knapsack_seq(items, c, n, 0, sol)
fmt.Println("Best value for sequential execution is", *sol)
}
func knapsack_check(sol_seq int, sol_par int) bool {
if sol_seq == sol_par {
return true
} else {
return false
}
}
func main() {
var n, capacity, sol_par, sol_seq int
file := flag.String("f", "", "Input file name")
flag.Parse()
items := make([]item, 256)
read_input(*file, items, &capacity, &n)
knapsack_main_seq(items, capacity, n, &sol_seq)
knapsack_main_par(items, capacity, n, &sol_par)
knapsack_check(sol_seq, sol_par)
}