-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparse_config.py
162 lines (130 loc) · 4.57 KB
/
parse_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
''' Reads config file and merges settings with default ones. '''
import multiprocessing
import os
import re
import yaml
import torch
from typing import Any
from easydict import EasyDict as edict
from debug import dprint
IN_KERNEL = os.environ.get('KAGGLE_WORKING_DIR') is not None
INPUT_PATH = '../input/imet-2019-fgvc6/' if IN_KERNEL else '../input/'
def _get_default_config(filename: str, fold: int) -> edict:
cfg = edict()
cfg.in_kernel = False
cfg.version = os.path.splitext(os.path.basename(filename))[0]
cfg.experiment_dir = f'../models/{cfg.version}/fold_{fold}/' \
if not IN_KERNEL else '.'
cfg.num_workers = min(12, multiprocessing.cpu_count())
cfg.model = edict()
cfg.model.arch = 'resnet50'
cfg.model.image_size = 0
cfg.model.input_size = 0
cfg.model.num_classes = None
cfg.model.num_folds = 5
cfg.model.bottleneck_fc = None
cfg.model.dropout = 0
cfg.data = edict()
cfg.data.train_dir = INPUT_PATH + 'train/'
cfg.data.test_dir = INPUT_PATH + 'test/'
cfg.data.rect_crop = edict()
cfg.data.rect_crop.enable = False
cfg.data.min_ratio = 0.08
cfg.data.max_ratio = 1.0
cfg.data.scale_both_dims = False
cfg.train = edict()
cfg.train.csv = ''
cfg.train.batch_size = 32 * torch.cuda.device_count()
cfg.train.num_epochs = 10 ** 9
cfg.train.shuffle = True
cfg.train.images_per_class = None
cfg.train.max_steps_per_epoch = 10 ** 9
cfg.train.log_freq = 100
cfg.train.min_lr = 3e-7
cfg.train.use_balancing_sampler = False
cfg.train.enable_warmup = False
cfg.train.head_only_warmup = False
cfg.train.accum_batches_num = 1
cfg.train.lr_decay_coeff = 0
cfg.train.lr_decay_milestones = []
cfg.train.mixup = edict()
cfg.train.mixup.enable = False
cfg.train.mixup.beta_a = 0.5
cfg.train.warmup = edict()
cfg.train.warmup.steps = None
cfg.train.warmup.max_lr = None
cfg.train.lr_finder = edict()
cfg.train.lr_finder.num_steps = 10 ** 9 # one epoch max
cfg.train.lr_finder.beta = 0.98
cfg.train.lr_finder.init_value = 1e-8
cfg.train.lr_finder.final_value = 10
cfg.val = edict()
cfg.val.images_per_class = None
cfg.test = edict()
cfg.test.csv = ''
cfg.test.batch_size = 64 * torch.cuda.device_count()
cfg.test.num_ttas = 1
cfg.test.tta_combine_func = 'mean'
cfg.optimizer = edict()
cfg.optimizer.name = 'adam'
cfg.optimizer.params = edict()
cfg.scheduler = edict()
cfg.scheduler.name = ''
cfg.scheduler.params = edict()
cfg.scheduler2 = edict()
cfg.scheduler2.name = ''
cfg.scheduler2.params = edict()
cfg.cosine = edict()
cfg.cosine.period = 1
cfg.cosine.period_inc = 1
cfg.cosine.max_period = 1000
cfg.cosine.min_metric_val = 0.6
cfg.loss = edict()
cfg.loss.name = 'none'
cfg.loss.params = edict()
cfg.augmentations = edict()
cfg.augmentations.global_prob = 1.0
cfg.augmentations.hflip = False
cfg.augmentations.vflip = False
cfg.augmentations.rotate90 = False
cfg.augmentations.affine = 'none'
cfg.augmentations.rect_crop = edict()
cfg.augmentations.rect_crop.enable = False
cfg.augmentations.rect_crop.rect_min_area = 0.1
cfg.augmentations.rect_crop.rect_min_ratio = 0.75
cfg.augmentations.noise = 0
cfg.augmentations.blur = 0
cfg.augmentations.distortion = 0
cfg.augmentations.color = 0
cfg.augmentations.erase = edict()
cfg.augmentations.erase.prob = 0
cfg.augmentations.erase.min_area = 0.02
cfg.augmentations.erase.max_area = 0.4
cfg.augmentations.erase.min_ratio = 0.3
cfg.augmentations.erase.max_ratio = 3.33
return cfg
def _merge_config(src: edict, dst: edict) -> edict:
if not isinstance(src, edict):
return
for k, v in src.items():
if isinstance(v, edict):
_merge_config(src[k], dst[k])
else:
dst[k] = v
def load_config(config_path: str, fold: int) -> edict:
loader = yaml.SafeLoader
loader.add_implicit_resolver(
u'tag:yaml.org,2002:float',
re.compile(u'''^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$''', re.X),
list(u'-+0123456789.'))
with open(config_path) as f:
yaml_config = edict(yaml.load(f, Loader=loader))
config = _get_default_config(config_path, fold)
_merge_config(yaml_config, config)
return config