(2.76)の右辺に\(
\l(\begin{array}{cc}
A & B
C & D \
\end{array}\r)
\)を掛ける。
\begin{align*}
X = &
\l(\begin{array}{cc}
A & B
C & D \
\end{array}\r)
\l(\begin{array}{cc}
M & -MBD-1 \
-D-1CM & D-1 + D-1CMBD-1 \
\end{array}\r) \
= &
\l(\begin{array}{cc}
AM - BD-1CM & -AMBD-1 + B(D-1 + D-1CMBD-1) \
CM - DD-1CM & -CMBD-1 + D(D-1 + D-1CMBD-1) \
\end{array}\r)
\end{align*}
\begin{align*}
X11 = & AM - BD-1CM
= & (A - BD-1C)M \
= & (A - BD-1C)(A - BD-1C)-1 \
= & I \
\end{align*}
\begin{align*}
X12 = & -AMBD-1 + B(D-1 + D-1CMBD-1)
= & -AMBD-1 + BD-1 + BD-1CMBD-1 \
= & -(A - BD-1C)MBD-1 + BD-1 \
= & -(A - BD-1C)(A - BD-1C)-1BD-1 + BD-1 \
= & -BD-1 + BD-1 \
= & O \
\end{align*}
\begin{align*}
X21 = & CM - DD-1CM
= & O \
\end{align*}
\begin{align*}
X22 = & -CMBD-1 + D(D-1 + D-1CMBD-1)
= & -CMBD-1 + I + CMBD-1 \
= & I \
\end{align*}
分割行列の逆行列の公式
\begin{align*}
\l(\begin{array}{cc}
A & B
C & D \
\end{array}\r)-1
=
\l(\begin{array}{cc}
M & -MBD-1 \
-D-1CM & D-1 + CMBD-1 \
\end{array}\r)-1
\end{align*}
ただし
\begin{align*}
M = (A - BD-1C)-1
\end{align*}
(2.104)
\begin{align*}
R = \l(\begin{array}{cc}
Λ + A^TLA & -A^TL \
-LA & L \
\end{array}\r)-1
\end{align*}
\begin{align*}
(R-1)11
= & M
= & (Λ + A^TLA - (-A^TL)L-1(-LA))-1 \
= & (Λ + A^TLA - A^TLL-1LA)-1 \
= & (Λ + A^TLA - A^TLA)-1 \
= & Λ-1 \
\end{align*}
\begin{align*}
(R-1)12
= & -MBD-1
= & -(Λ-1)(-A^TL)(L)-1 \
= & Λ-1A^TLL-1 \
= & Λ-1A^T \
\end{align*}
\begin{align*}
(R-1)21
= & -D-1CM
= & -(L)-1(-LA)(Λ-1) \
= & L-1LAΛ-1 \
= & AΛ-1 \
\end{align*}
\begin{align*}
(R-1)22
= & D-1 + CMBD-1
= & (L)-1 + (-LA)(Λ-1)(-A^TL)(L)-1 \
= & L-1 + LAΛ-1A^TLL-1 \
= & L-1 + LAΛ-1A^T \
\end{align*}
(2.107)
\begin{align*}
E[z] = R-1 \l( \begin{array}{c}
Λμ - A^TLb
Lb \
\end{array} \r)
\end{align*}
(2.105)
\begin{align*}
R-1 = \l( \begin{array}{cc}
Λ-1 & Λ-1A^T \
AΛ-1 & L-1 + AΛ-1A^T \
\end{array} \r)
\end{align*}
\begin{align*}
E[z]_1 = & Λ-1(Λμ - A^TLb) + Λ-1A^TLb
= & Λ-1Λμ - Λ-1A^TLb + Λ-1A^TLb \
= & μ \
\end{align*}
\begin{align*}
E[z]_2 = & AΛ-1(Λμ - A^TLb) + (L-1 + AΛ-1A^T)Lb
= & AΛ-1Λμ - AΛ-1A^TLb + L-1Lb + AΛ-1A^TLb \
= & Aμ - AΛ-1A^TLb + b + AΛ-1A^TLb \
= & Aμ+ b \
\end{align*}