forked from qcappart/hybrid-cp-rl-solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_training_ppo_tsptw.sh
executable file
·56 lines (46 loc) · 1.5 KB
/
run_training_ppo_tsptw.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/bin/bash
# Seed for the random generation: ensure that the validation set remains the same.
seed=1
# Characterics of the training instances
n_city=20
grid_size=100
max_tw_gap=10
max_tw_size=100
# Parameters for the training
k_epochs=3
update_timestep=2048
learning_rate=0.0001
entropy_value=0.001
eps_clip=0.1
batch_size=64 # batch size must be a divisor of update_timestep
latent_dim=128
hidden_layer=4
# Others
plot_training=1 # Boolean value: plot the training curve or not
mode=cpu
# Folder to save the trained model
network_arch=hidden_layers-$hidden_layer-latent_dim-$latent_dim/
result_root=trained-models/ppo/tsptw/n-city-$n_city/grid-$grid_size-tw-$max_tw_gap-$max_tw_size/seed-$seed/$network_arch
save_dir=$result_root/k_epochs-$k_epochs-update_timestep-$update_timestep-batch_size-$batch_size-learning_rate-$learning_rate-entropy_value-$entropy_value-eps_clip-$eps_clip
if [ ! -e $save_dir ];
then
mkdir -p $save_dir
fi
python src/problem/tsptw/main_training_ppo_tsptw.py \
--seed $seed \
--n_city $n_city \
--grid_size $grid_size \
--max_tw_gap $max_tw_gap \
--max_tw_size $max_tw_size \
--k_epochs $k_epochs \
--update_timestep $update_timestep \
--learning_rate $learning_rate \
--eps_clip $eps_clip \
--entropy_value $entropy_value \
--batch_size $batch_size \
--latent_dim $latent_dim \
--hidden_layer $hidden_layer \
--save_dir $save_dir \
--plot_training $plot_training \
--mode $mode \
2>&1 | tee $save_dir/log-training.txt