forked from ds4dm/learn2branch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_test.py
247 lines (194 loc) · 8.98 KB
/
04_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import sys
import importlib
import argparse
import csv
import numpy as np
import time
import pickle
import pathlib
import gzip
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import svmrank
import utilities
from utilities_tf import load_batch_gcnn
def load_batch_flat(sample_files, feats_type, augment_feats, normalize_feats):
cand_features = []
cand_choices = []
cand_scoress = []
for i, filename in enumerate(sample_files):
cand_states, cand_scores, cand_choice = utilities.load_flat_samples(filename, feats_type, 'scores', augment_feats, normalize_feats)
cand_features.append(cand_states)
cand_choices.append(cand_choice)
cand_scoress.append(cand_scores)
n_cands_per_sample = [v.shape[0] for v in cand_features]
cand_features = np.concatenate(cand_features, axis=0).astype(np.float32, copy=False)
cand_choices = np.asarray(cand_choices).astype(np.int32, copy=False)
cand_scoress = np.concatenate(cand_scoress, axis=0).astype(np.float32, copy=False)
n_cands_per_sample = np.asarray(n_cands_per_sample).astype(np.int32, copy=False)
return cand_features, n_cands_per_sample, cand_choices, cand_scoress
def padding(output, n_vars_per_sample, fill=-1e8):
n_vars_max = tf.reduce_max(n_vars_per_sample)
output = tf.split(
value=output,
num_or_size_splits=n_vars_per_sample,
axis=1,
)
output = tf.concat([
tf.pad(
x,
paddings=[[0, 0], [0, n_vars_max - tf.shape(x)[1]]],
mode='CONSTANT',
constant_values=fill)
for x in output
], axis=0)
return output
def process(policy, dataloader, top_k):
mean_kacc = np.zeros(len(top_k))
n_samples_processed = 0
for batch in dataloader:
if policy['type'] == 'gcnn':
c, ei, ev, v, n_cs, n_vs, n_cands, cands, best_cands, cand_scores = batch
pred_scores = policy['model']((c, ei, ev, v, tf.reduce_sum(n_cs, keepdims=True), tf.reduce_sum(n_vs, keepdims=True)), tf.convert_to_tensor(False))
# filter candidate variables
pred_scores = tf.expand_dims(tf.gather(tf.squeeze(pred_scores, 0), cands), 0)
elif policy['type'] == 'ml-competitor':
cand_feats, n_cands, best_cands, cand_scores = batch
# move to numpy
cand_feats = cand_feats.numpy()
n_cands = n_cands.numpy()
# feature normalization
cand_feats = (cand_feats - policy['feat_shift']) / policy['feat_scale']
pred_scores = policy['model'].predict(cand_feats)
# move back to TF
pred_scores = tf.convert_to_tensor(pred_scores.reshape((1, -1)), dtype=tf.float32)
# padding
pred_scores = padding(pred_scores, n_cands)
true_scores = padding(tf.reshape(cand_scores, (1, -1)), n_cands)
true_bestscore = tf.reduce_max(true_scores, axis=-1, keepdims=True)
assert all(true_bestscore.numpy() == np.take_along_axis(true_scores.numpy(), best_cands.numpy().reshape((-1, 1)), axis=1))
kacc = []
for k in top_k:
pred_top_k = tf.nn.top_k(pred_scores, k=k)[1].numpy()
pred_top_k_true_scores = np.take_along_axis(true_scores.numpy(), pred_top_k, axis=1)
kacc.append(np.mean(np.any(pred_top_k_true_scores == true_bestscore.numpy(), axis=1)))
kacc = np.asarray(kacc)
batch_size = int(n_cands.shape[0])
mean_kacc += kacc * batch_size
n_samples_processed += batch_size
mean_kacc /= n_samples_processed
return mean_kacc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'problem',
help='MILP instance type to process.',
choices=['setcover', 'cauctions', 'facilities', 'indset'],
)
parser.add_argument(
'-g', '--gpu',
help='CUDA GPU id (-1 for CPU).',
type=int,
default=0,
)
args = parser.parse_args()
print(f"problem: {args.problem}")
print(f"gpu: {args.gpu}")
os.makedirs("results", exist_ok=True)
result_file = f"results/{args.problem}_validation_{time.strftime('%Y%m%d-%H%M%S')}.csv"
seeds = [0, 1, 2, 3, 4]
gcnn_models = ['baseline']
other_models = ['extratrees_gcnn_agg', 'lambdamart_khalil', 'svmrank_khalil']
test_batch_size = 128
top_k = [1, 3, 5, 10]
problem_folders = {
'setcover': 'setcover/500r_1000c_0.05d',
'cauctions': 'cauctions/100_500',
'facilities': 'facilities/100_100_5',
'indset': 'indset/500_4',
}
problem_folder = problem_folders[args.problem]
if args.problem == 'setcover':
gcnn_models += ['mean_convolution', 'no_prenorm']
result_file = f"results/{args.problem}_test_{time.strftime('%Y%m%d-%H%M%S')}"
result_file = result_file + '.csv'
os.makedirs('results', exist_ok=True)
### TENSORFLOW SETUP ###
if args.gpu == -1:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
else:
os.environ['CUDA_VISIBLE_DEVICES'] = f'{args.gpu}'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
tf.enable_eager_execution(config)
tf.executing_eagerly()
test_files = list(pathlib.Path(f"data/samples/{problem_folder}/test").glob('sample_*.pkl'))
test_files = [str(x) for x in test_files]
print(f"{len(test_files)} test samples")
evaluated_policies = [['gcnn', model] for model in gcnn_models] + \
[['ml-competitor', model] for model in other_models]
fieldnames = [
'policy',
'seed',
] + [
f'acc@{k}' for k in top_k
]
with open(result_file, 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for policy_type, policy_name in evaluated_policies:
print(f"{policy_type}:{policy_name}...")
for seed in seeds:
rng = np.random.RandomState(seed)
tf.set_random_seed(rng.randint(np.iinfo(int).max))
policy = {}
policy['name'] = policy_name
policy['type'] = policy_type
if policy['type'] == 'gcnn':
# load model
sys.path.insert(0, os.path.abspath(f"models/{policy['name']}"))
import model
importlib.reload(model)
del sys.path[0]
policy['model'] = model.GCNPolicy()
policy['model'].restore_state(f"trained_models/{args.problem}/{policy['name']}/{seed}/best_params.pkl")
policy['model'].call = tfe.defun(policy['model'].call, input_signature=policy['model'].input_signature)
policy['batch_datatypes'] = [tf.float32, tf.int32, tf.float32,
tf.float32, tf.int32, tf.int32, tf.int32, tf.int32, tf.int32, tf.float32]
policy['batch_fun'] = load_batch_gcnn
else:
# load feature normalization parameters
try:
with open(f"trained_models/{args.problem}/{policy['name']}/{seed}/normalization.pkl", 'rb') as f:
policy['feat_shift'], policy['feat_scale'] = pickle.load(f)
except:
policy['feat_shift'], policy['feat_scale'] = 0, 1
# load model
if policy_name.startswith('svmrank'):
policy['model'] = svmrank.Model().read(f"trained_models/{args.problem}/{policy['name']}/{seed}/model.txt")
else:
with open(f"trained_models/{args.problem}/{policy['name']}/{seed}/model.pkl", 'rb') as f:
policy['model'] = pickle.load(f)
# load feature specifications
with open(f"trained_models/{args.problem}/{policy['name']}/{seed}/feat_specs.pkl", 'rb') as f:
feat_specs = pickle.load(f)
policy['batch_datatypes'] = [tf.float32, tf.int32, tf.int32, tf.float32]
policy['batch_fun'] = lambda x: load_batch_flat(x, feat_specs['type'], feat_specs['augment'], feat_specs['qbnorm'])
test_data = tf.data.Dataset.from_tensor_slices(test_files)
test_data = test_data.batch(test_batch_size)
test_data = test_data.map(lambda x: tf.py_func(
policy['batch_fun'], [x], policy['batch_datatypes']))
test_data = test_data.prefetch(2)
test_kacc = process(policy, test_data, top_k)
print(f" {seed} " + " ".join([f"acc@{k}: {100*acc:4.1f}" for k, acc in zip(top_k, test_kacc)]))
writer.writerow({
**{
'policy': f"{policy['type']}:{policy['name']}",
'seed': seed,
},
**{
f'acc@{k}': test_kacc[i] for i, k in enumerate(top_k)
},
})
csvfile.flush()