-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiophantine_equation.cpp
72 lines (56 loc) · 1.47 KB
/
Diophantine_equation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <cstdio>
#include <tuple>
using namespace std;
// Function for Extended Euclidean algorithm
// It returns multiple values using tuple in C++
tuple<int, int> extended_gcd(int a, int b)
{
if (a == 0)
return make_tuple(0, 1);
int x, y;
// unpack tuple returned by function into variables
tie(x, y) = extended_gcd(b % a, a);
return make_tuple((y - (b/a) * x), x);
}
// Recursive function to calculate gcd of two numbers
// using euclid's algorithm
int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
// C++ program to find general solution of Linear Diophantine equation
int main()
{
int a, b, d, n, a1, b1, c1, n1;
int x0, y0;
int i;
int s, t;
while (!feof(stdin))
{
fscanf(stdin, "%dx + %dy = %d\n", &a, &b, &n);
fprintf(stdout, "%dx + %dy = %d\n", a, b, n);
d = gcd(a, b);
fprintf(stdout, "GCD(%d, %d) = %d\n", a, b, d);
if (!(d % n == 0))
fputs("The given equation has Infinite solutions.\n", stdout);
else
{
fputs("The given equation has no solution.\n", stdout);
continue;
}
a1 = a / d;
b1 = b / d;
c1 = n / d;
fprintf(stdout, "Reduced Equation :%ds + %dt = 1\n", a1, b1);
tie(s, t) = extended_gcd(a1, b1);
x0 = (n / d) * s;
y0 = (n / d) * t;
fputs("General solution - \n", stdout);
fprintf(stdout, "x = %d + %dk for any integer m\n", x0, b / d);
fprintf(stdout, "y = %d - %dk for any integer m", y0, a / d);
fprintf(stdout, "\n\n----------------------------------------\n\n");
}
return 0;
}