-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenomes.Rmd
234 lines (173 loc) · 4.87 KB
/
genomes.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
title: "R Notebook - Analyze genome data"
output:
html_document:
df_print: paged
toc: yes
html_notebook:
highlight: haddock
mathjax: null
number_sections: yes
theme: readable
toc: yes
toc_float: yes
editor_options:
chunk_output_type: inline
---
# Load library
```{r}
library(tidyverse)
library(data.table)
library(janitor)
```
## Read data
```{r}
genomes_data <- data.table::fread("genome_data/prokaryotes.txt") %>%
janitor::clean_names()
```
```{r}
str(genomes_data)
```
## Fix the names and select columns we need
```{r}
genomes_data_df <- genomes_data %>%
janitor::clean_names() %>%
select(number_organism_name,
group,
sub_group,
strain,
size_mb,
gc_percent,
scaffolds,
genes,
proteins,
status,
release_date,
modify_date,
center
) %>%
mutate(genes=as.numeric(genes), proteins = as.numeric(proteins))
```
# Find number of genomes released by year
```{r}
genomes_data_df %>%
separate(release_date, c("year","month","day")) %>%
group_by(year) %>%
summarise(genomes_cnt = n()) %>%
ggplot(.,aes(x = year, y = genomes_cnt)) +
geom_bar(stat = "identity") +
theme_minimal()+
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```
# Find number of complete genomes by year
```{r}
unique(genomes_data_df$status)
```
Complete Genome $>$ Chromosome $>$ Scaffold $>$ Contig
```{r}
genomes_data_df %>%
separate(release_date, c("year","month","day")) %>%
filter(grepl("Complete", status)) %>%
group_by(year) %>%
summarise(genomes_cnt = n()) %>%
ggplot(.,aes(x = year, y = genomes_cnt)) +
geom_bar(stat = "identity") +
theme_minimal()+
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```
##Find number of genomes released by Baylor College of Medicine
```{r}
genomes_data_df %>%
separate(release_date, c("year","month","day")) %>%
group_by(center) %>%
summarise(genomes_cnt = n()) %>%
arrange(desc(genomes_cnt)) %>%
filter(grepl("Baylor|BCM",center))
```
# Find top 10 submitter of complete genomes.
```{r}
genomes_data_df %>%
separate(release_date, c("year","month","day")) %>%
filter(grepl("Complete| Chromosome", status)) %>%
group_by(center) %>%
summarise(genomes_cnt = n()) %>%
arrange(desc(genomes_cnt)) %>%
slice(1:10) %>%
ggplot(.,aes(x = reorder(center, -genomes_cnt), y = genomes_cnt)) +
geom_bar(stat = "identity") +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
coord_flip()
```
# Find the most submitted genome bacterium
```{r}
genomes_data_df %>%
separate(release_date, c("year","month","day")) %>%
group_by(number_organism_name) %>%
summarise(genomes_cnt = n()) %>%
arrange(desc(genomes_cnt))
```
#Find the most submitted genome by CDC
```{r}
genomes_data_df %>%
filter(grepl("CDC|Centers for Disease Control and Prevention|Food And Drug",center)) %>%
group_by(number_organism_name) %>%
summarise(genomes_cnt = n()) %>%
arrange(desc(genomes_cnt))
```
#What is the GC content of the bacteria sequenced by the CDC as compared to overall GC content?
GC content indicates the percent of G,C bases out of total four base - ATGC that makes DNA
```{r}
genomes_data_df %>%
filter(grepl("CDC|Centers for Disease Control and Prevention|Food And Drug",center)) %>%
filter(status == "Complete Genome") %>%
mutate(gc_percent = as.numeric(gc_percent)) %>%
summarize(mean_gc = mean(gc_percent, na.rm = T))
```
#Calculate the GC percent by the group
```{r}
genomes_data_df %>%
filter(status == "Complete Genome") %>%
mutate(gc_percent = as.numeric(gc_percent)) %>%
group_by(sub_group) %>%
summarize(mean_gc = mean(gc_percent, na.rm = T)) %>%
arrange(desc(mean_gc))
```
#Calculate the size by the group
```{r}
genomes_data_df %>%
filter(grepl("Complete", status)) %>%
mutate(size_mb = as.numeric(size_mb)) %>%
group_by(group) %>%
summarize(avg_size_mb = mean(size_mb, na.rm = T)) %>%
arrange(desc(avg_size_mb))
```
#Calculate the size by the group and sub_group
```{r}
genomes_data_df %>%
filter(grepl("Complete", status)) %>%
mutate(size_mb = as.numeric(size_mb)) %>%
group_by(group,sub_group) %>%
summarize(avg_size_mb = mean(size_mb, na.rm = T)) %>%
arrange(desc(avg_size_mb))
```
#What is the relation between genome size and genes?
```{r}
genomes_data_df %>%
filter(grepl("Complete", status)) %>%
filter(size_mb < 5) %>%
ggplot(.,aes(x = size_mb, y = genes)) +
geom_point() +
theme_bw() +
geom_smooth(method = "lm", se = FALSE)
```
#What is the relation between genome size and GC-content?
```{r}
genomes_data_df %>%
filter(grepl("Complete", status)) %>%
filter(size_mb > 5) %>%
mutate(gc_percent = as.numeric(gc_percent)) %>%
ggplot(.,aes(x = size_mb, y = gc_percent)) +
geom_point() +
theme_bw() +
geom_smooth(method = "lm", se = TRUE)
```